Concrete Semantics with Isabelle/HOL

Tobias Nipkow

Fakultät für Informatik
Technische Universität München
2023-1-31

Part II

Semantics

Chapter 7

IMP:

A Simple Imperative Language

(1) IMP Commands

(2) Big-Step Semantics

(3) Small-Step Semantics

(1) IMP Commands

(2) Big-Step Semantics

(3) Small-Step Semantics

Terminology

Statement: declaration of fact or claim

Semantics is easy.

Command: order to do something
Study the book until you have understood it.

Expressions are evaluated, commands are executed

Commands

Concrete syntax:

$$
\begin{aligned}
\text { com }::= & \text { SKIP } \\
& \text { string }::=\text { aexp } \\
& \text { com ; com } \\
& \text { IF bexp THEN com ELSE com } \\
& \text { WHILE bexp DO com }
\end{aligned}
$$

Commands

Abstract syntax:
datatype com $=$ SKIP
| Assign string aexp
Seq com com
If bexp com com
While bexp com

Com.thy

(1) IMP Commands

(2) Big-Step Semantics

(3) Small-Step Semantics

Big-step semantics

Concrete syntax:

$$
\begin{gathered}
(\text { com, initial-state }) \Rightarrow \text { final-state } \\
\text { Intended meaning of }(c, s) \Rightarrow t:
\end{gathered}
$$

Command c started in state s terminates in state t
$" \Rightarrow$ " here not type!

Big-step rules

$$
\begin{gathered}
(S K I P, s) \Rightarrow s \\
(x::=a, s) \Rightarrow s(x:=\text { aval a } s) \\
\frac{\left(c_{1}, s_{1}\right) \Rightarrow s_{2} \quad\left(c_{2}, s_{2}\right) \Rightarrow s_{3}}{\left(c_{1} ; ; c_{2}, s_{1}\right) \Rightarrow s_{3}}
\end{gathered}
$$

Big-step rules

$$
\begin{gathered}
\frac{b v a l b s}{\left(\text { IF } b \text { THEN } c_{1}\right.} \begin{array}{c}
E L S E \\
\left.c_{2}, s\right) \Rightarrow t \\
\\
\quad \neg \text { bval b } s \quad\left(c_{2}, s\right) \Rightarrow t \\
\left(\text { IF } b \text { THEN } c_{1} E L S E \quad c_{2}, s\right) \Rightarrow t
\end{array}
\end{gathered}
$$

Big-step rules

$$
\begin{gathered}
\frac{\neg \text { bval } b s}{(W H I L E b D O c, s) \Rightarrow s} \\
\frac{b v a l b s_{1}}{\left(c, s_{1}\right) \Rightarrow s_{2} \quad\left(W H I L E b D O c, s_{2}\right) \Rightarrow s_{3}} \\
\left(W H I L E b D O c, s_{1}\right) \Rightarrow s_{3}
\end{gathered}
$$

Examples: derivation trees

(" $\left.x^{\prime \prime}::=N 5 ; ;{ }^{\prime \prime} y^{\prime \prime}::=V^{\prime \prime} x^{\prime \prime}, s\right) \Rightarrow$?
where $w=$ WHILE $b D O c$

$$
\begin{aligned}
b & =\operatorname{NotEq}\left(V^{\prime \prime} x^{\prime}\right)\left(\begin{array}{l}
N
\end{array}\right) \\
c & ={ }^{\prime \prime} x^{\prime \prime}::=P \operatorname{Plus}\left(V^{\prime \prime} x^{\prime \prime}\right)\left(\begin{array}{l}
N
\end{array}\right) \\
s_{i} & =s\left({ }^{\prime \prime} x^{\prime \prime}:=i\right)
\end{aligned}
$$

NotE $a_{1} a_{2}=$
$\operatorname{Not}\left(\operatorname{And}\left(\operatorname{Not}\left(\right.\right.\right.$ Less $\left.\left.a_{1} a_{2}\right)\right)\left(\operatorname{Not}\left(\right.\right.$ Less $\left.\left.\left.a_{2} a_{1}\right)\right)\right)$

Logically speaking

$$
(c, s) \Rightarrow t
$$

is just infix syntax for

$$
\text { big_step }(c, s) t
$$

where

$$
\text { big_step }:: \text { com } \times \text { state } \Rightarrow \text { state } \Rightarrow \text { bool }
$$

is an inductively defined predicate.

Big_Step.thy

Semantics

Rule inversion

What can we deduce from

- $(S K I P, s) \Rightarrow t$?
- $(x::=a, s) \Rightarrow t$?
- $\left(c_{1} ; ; c_{2}, s_{1}\right) \Rightarrow s_{3}$?
- (IF b THEN $\left.c_{1} E L S E c_{2}, s\right) \Rightarrow t$?
- $(w, s) \Rightarrow t$ where $w=$ WHILE b DO c ?

Automating rule inversion

Isabelle command inductive_cases produces theorems that perform rule inversions automatically.

We reformulate the inverted rules. Example:

$$
\frac{\left(c_{1} ; ; c_{2}, s_{1}\right) \Rightarrow s_{3}}{\exists s_{2} .\left(c_{1}, s_{1}\right) \Rightarrow s_{2} \wedge\left(c_{2}, s_{2}\right) \Rightarrow s_{3}}
$$

is logically equivalent to

$$
\begin{gathered}
\left(c_{1} ; c_{2}, s_{1}\right) \Rightarrow s_{3} \\
\frac{\bigwedge s_{2} \cdot \llbracket\left(c_{1}, s_{1}\right) \Rightarrow s_{2} ;\left(c_{2}, s_{2}\right) \Rightarrow s_{3} \rrbracket \Longrightarrow P}{P}
\end{gathered}
$$

Replaces assm $\left(c_{1} ; ; c_{2}, s_{1}\right) \Rightarrow s_{3}$ by two assms $\left(c_{1}, s_{1}\right) \Rightarrow s_{2}$ and $\left(c_{2}, s_{2}\right) \Rightarrow s_{3}$ (with a new fixed s_{2}). No \exists and \wedge !

The general format: elimination rules

$$
\frac{a s m \quad a s m_{1} \Longrightarrow P \quad \ldots \quad a s m_{n} \Longrightarrow P}{P}
$$

(possibly with $\bigwedge \bar{x}$ in front of the $\operatorname{asm}_{i} \Longrightarrow P$)

Reading:
To prove a goal P with assumption asm, prove all $\operatorname{asm}_{i} \Longrightarrow P$

Example:

$$
\frac{F \vee G \quad F \Longrightarrow P \quad G \Longrightarrow P}{P}
$$

elim attribute

- Theorems with elim attribute are used automatically by blast, fastforce and auto
- Can also be added locally, eg (blast elim: ...)
- Variant: elim! applies elim-rules eagerly.

Big_Step.thy

Rule inversion

Command equivalence

Two commands have the same input/output behaviour:

$$
c \sim c^{\prime} \equiv\left(\forall s t .(c, s) \Rightarrow t \longleftrightarrow\left(c^{\prime}, s\right) \Rightarrow t\right)
$$

Example

$$
w \sim w^{\prime}
$$

where $w=$ WHILE $b D O c$

$$
w^{\prime}=I F \quad \text { THEN } c ; ; w E L S E \text { SKIP }
$$

Equivalence proof

$$
\begin{gathered}
(w, s) \Rightarrow t \\
\longleftrightarrow \\
\text { bval bs } \wedge\left(\exists s^{\prime} \cdot(c, s) \Rightarrow s^{\prime} \wedge\left(w, s^{\prime}\right) \Rightarrow t\right) \\
\vee \\
\neg \text { bval } b s \wedge t=s \\
\longleftrightarrow \\
\left(w^{\prime}, s\right) \Rightarrow t
\end{gathered}
$$

Using the rules and rule inversions for \Rightarrow.

Big_Step.thy

Command equivalence

Execution is deterministic

Any two executions of the same command in the same start state lead to the same final state:

$$
(c, s) \Rightarrow t \Longrightarrow(c, s) \Rightarrow t^{\prime} \Longrightarrow t=t^{\prime}
$$

Proof by rule induction, for arbitrary t^{\prime}.

Big_Step.thy

Execution is deterministic

The boon and bane of big steps

We cannot observe intermediate states/steps
Example problem:
(c, s) does not terminate iff $\nexists t .(c, s) \Rightarrow t$?
Needs a formal notion of nontermination to prove it. Could be wrong if we have forgotten $a \Rightarrow$ rule.

Big-step semantics cannot directly describe

- nonterminating computations,
- parallel computations.

We need a finer grained semantics!

(1) IMP Commands

(2) Big-Step Semantics

(3) Small-Step Semantics

Small-step semantics

Concrete syntax:

$$
(\text { com,state }) \rightarrow(\text { com,state })
$$

Intended meaning of $(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right)$:
The first step in the execution of c in state s leaves a "remainder" command c^{\prime} to be executed in state s^{\prime}.
Execution as finite or infinite reduction:

$$
\left(c_{1}, s_{1}\right) \rightarrow\left(c_{2}, s_{2}\right) \rightarrow\left(c_{3}, s_{3}\right) \rightarrow \ldots
$$

Terminology

- A pair (c, s) is called a configuration.
- If $c s \rightarrow c s^{\prime}$ we say that $c s$ reduces to $c s^{\prime}$.
- A configuration $c s$ is final iff $\nexists c s^{\prime} . c s \rightarrow c s^{\prime}$

The intention:

$(S K I P, s)$ is final

Why?

SKIP is the empty program. Nothing more to be done.

Small-step rules

$$
(x::=a, s) \rightarrow(S K I P, s(x:=\text { aval a } s))
$$

$(S K I P ; c, s) \rightarrow(c, s)$

$$
\frac{\left(c_{1}, s\right) \rightarrow\left(c_{1}^{\prime}, s^{\prime}\right)}{\left(c_{1} ; ; c_{2}, s\right) \rightarrow\left(c_{1}^{\prime} ; ; c_{2}, s^{\prime}\right)}
$$

Small-step rules

$$
\begin{gathered}
\frac{b v a l b s}{\left(\text { IF b THEN } c_{1} E L S E c_{2}, s\right) \rightarrow\left(c_{1}, s\right)} \\
\frac{\neg \text { bval b } s}{\left(\text { IF b THEN } c_{1} E L S E c_{2}, s\right) \rightarrow\left(c_{2}, s\right)} \\
(\text { WHILE b DO } c, s) \rightarrow \\
(\text { IF } b \text { THEN } c ; \text { WHILE b DO c ELSE SKIP, s) }
\end{gathered}
$$

Fact $(S K I P, s)$ is a final configuration.

Small-step examples

(" $\left.{ }^{\prime \prime}::=V^{\prime \prime} x^{\prime \prime} ; ;{ }^{\prime \prime} x^{\prime \prime}::=V^{\prime \prime} y^{\prime \prime} ; ;{ }^{\prime \prime} y^{\prime \prime}::=V^{\prime \prime} z^{\prime \prime}, s\right) \rightarrow \ldots$
where $s=<^{\prime \prime} x^{\prime \prime}:=3,{ }^{\prime \prime} y^{\prime \prime}:=7,{ }^{\prime \prime} z^{\prime \prime}:=5>$.

$$
\left(w, s_{0}\right) \rightarrow \ldots
$$

where $w=$ WHILE b DO c

$$
b=\operatorname{Less}\left(V^{\prime \prime} x^{\prime \prime}\right)(N 1)
$$

$$
c={ }^{\prime \prime} x^{\prime \prime}::=\text { Plus }\left(V^{\prime \prime} x^{\prime \prime}\right)(N 1)
$$

$$
s_{n}=<^{\prime \prime} x^{\prime \prime}:=n>
$$

Small_Step.thy

Semantics

Are big and small-step semantics equivalent?

From \Rightarrow to $\rightarrow *$

Theorem $c s \Rightarrow t \Longrightarrow c s \rightarrow *(S K I P, t)$
Proof by rule induction (of course on $c s \Rightarrow t$)
In two cases a lemma is needed:
Lemma
$\left(c_{1}, s\right) \rightarrow *\left(c_{1}^{\prime}, s^{\prime}\right) \Longrightarrow\left(c_{1} ; c_{2}, s\right) \rightarrow *\left(c_{1}^{\prime} ; ; c_{2}, s^{\prime}\right)$
Proof by rule induction.

From $\rightarrow *$ to \Rightarrow

Theorem $c s \rightarrow *(S K I P, t) \Longrightarrow c s \Rightarrow t$
Proof by rule induction on $c s \rightarrow *(S K I P, t)$.
In the induction step a lemma is needed:
Lemma $c s \rightarrow c s^{\prime} \Longrightarrow c s^{\prime} \Rightarrow t \Longrightarrow c s \Rightarrow t$
Proof by rule induction on $c s \rightarrow c s^{\prime}$.

Equivalence

Corollary $c s \Rightarrow t \longleftrightarrow c s \rightarrow *(S K I P, t)$

Small_Step.thy

Equivalence of big and small

Can execution stop prematurely?

That is, are there any final configs except $(S K I P, s)$?
Lemma final $(c, s) \Longrightarrow c=S K I P$
We prove the contrapositive
$c \neq S K I P \Longrightarrow \neg \operatorname{final}(c, s)$
by induction on c.

- Case $c_{1} ; ; c_{2}$: by case distinction:
- $c_{1}=$ SKIP $\Longrightarrow \neg$ final $\left(c_{1} ; ; c_{2}, s\right)$
- $c_{1} \neq$ SKIP $\Longrightarrow \neg \operatorname{final}\left(c_{1}, s\right)$ (by IH)

$$
\Longrightarrow \neg \text { final }\left(c_{1} ; ; c_{2}, s\right)
$$

- Remaining cases: trivial or easy

By rule inversion: $(S K I P, s) \rightarrow c t \Longrightarrow$ False
Together:
Corollary final $(c, s)=(c=S K I P)$

Infinite executions

\Rightarrow yields final state iff \rightarrow terminates

Lemma $(\exists t . c s \Rightarrow t)=\left(\exists c s^{\prime} . c s \rightarrow * c s^{\prime} \wedge\right.$ final $\left.c s^{\prime}\right)$
Proof: $\quad(\exists t . c s \Rightarrow t)$
$=(\exists t . c s \rightarrow *(S K I P, t))$
(by big $=$ small)
$=\left(\exists c s^{\prime} . c s \rightarrow * c s^{\prime} \wedge\right.$ final $\left.c s^{\prime}\right)$ $($ by final $=$ SKIP $)$

Equivalent:
\Rightarrow does not yield final state iff \rightarrow does not terminate

May versus Must

\rightarrow is deterministic:
Lemma $c s \rightarrow c s^{\prime} \Longrightarrow \quad c s \rightarrow c s^{\prime \prime} \quad \Longrightarrow \quad c s^{\prime \prime}=c s^{\prime}$ (Proof by rule induction)

Therefore: no difference between
may terminate (there is a terminating \rightarrow path)
must terminate (all \rightarrow paths terminate)
Therefore: \Rightarrow correctly reflects termination behaviour.
With nondeterminism: may have both $c s \Rightarrow t$ and a nonterminating reduction $c s \rightarrow c s^{\prime} \rightarrow \ldots$

Chapter 8

Compiler

(4) Stack Machine
(5) Compiler
(4) Stack Machine

(5) Compiler

Stack Machine

Instructions:

datatype instr $=$

LOADI int
LOAD vname
$A D D$
STORE vname
JMP int
JMPLESS int
JMPGE int
load value
load var
add top of stack
store var
jump
jump if <
jump if \geq

Semantics

Type synonyms:

$$
\begin{aligned}
\text { stack } & =\text { int list } \\
\text { config } & =\text { int } \times \text { state } \times \text { stack }
\end{aligned}
$$

Execution of 1 instruction:
iexec $::$ instr \Rightarrow config \Rightarrow config
Abbreviations:

$$
\begin{aligned}
& h d 2 x s \equiv h d(t l x s) \\
& t l 2 x s \equiv t l(t l x s)
\end{aligned}
$$

Instruction execution

exec instr $(i, s, s t k)=$
(case instr of LOADI $n \Rightarrow(i+1, s, n \# s t k)$
$L O A D x \Rightarrow(i+1, s, s x \# s t k)$
$A D D \Rightarrow(i+1, s,(h d 2 s t k+h d s t k) \# t l 2 s t k)$
STORE $x \Rightarrow(i+1, s(x:=h d s t k), t l s t k)$
$J M P n \Rightarrow(i+1+n, s, s t k)$
JMPLESS $n \Rightarrow$
(if $h d 2$ st $<h d$ st then $i+1+n$ else $i+1$, $s, t l 2$ st)
| JMPGE $n \Rightarrow$
(if $h d$ st $\leq h d 2$ str then $i+1+n$ else $i+1$, $s, t l 2 s t k)$)

Program execution (1 step)

Programs are instruction lists.

Executing one program step:

$$
\text { instr list } \vdash \text { config } \rightarrow \text { config }
$$

$$
\begin{aligned}
& 0 \leq i \wedge i<\text { size } P \Longrightarrow \\
& P \vdash(i, s, \text { stk }) \rightarrow \text { iexec }(P!!i)(i, s, s t k)
\end{aligned}
$$

$$
\text { where 'a list !! int } \quad=\mathrm{nth} \text { instruction of list }
$$

$$
\text { size }::^{\prime} a \text { list } \Rightarrow \text { int }=\text { list size as integer }
$$

Program execution (* steps)

Defined in the usual manner:

$$
P \vdash(p c, s, s t k) \rightarrow *\left(p c^{\prime}, s^{\prime}, s t k^{\prime}\right)
$$

Compiler.thy

Stack Machine

(4) Stack Machine

(5) Compiler

Compiling aexp

Same as before:

$\operatorname{acomp}(N n)=[L O A D I n]$
$\operatorname{acomp}(V x)=[L O A D x]$
$\operatorname{acomp}\left(\right.$ Plus $\left.a_{1} a_{2}\right)=\operatorname{acomp} a_{1} @ a c o m p ~ a_{2} @[A D D]$
Correctness theorem:
acomp a
$\vdash(0, s, s t k) \rightarrow *($ size $($ acomp $a), s$, aval a $s \#$ stk $)$
Proof by induction on a (with arbitrary $s t k$).
Needs lemmas!
$P \vdash c \rightarrow * c^{\prime} \Longrightarrow P @ P^{\prime} \vdash c \rightarrow * c^{\prime}$
$P \vdash(i, s, s t k) \rightarrow *\left(i^{\prime}, s^{\prime}, s t k^{\prime}\right) \Longrightarrow$
$P^{\prime} @ P \vdash\left(\right.$ size $P^{\prime}+i, s$, stk $) \rightarrow *\left(\right.$ size $P^{\prime}+i^{\prime}, s^{\prime}$, stk $)$
Proofs by rule induction on $\rightarrow *$, using the corresponding single step lemmas:
$P \vdash c \rightarrow c^{\prime} \Longrightarrow P @ P^{\prime} \vdash c \rightarrow c^{\prime}$
$P \vdash(i, s, s t k) \rightarrow\left(i^{\prime}, s^{\prime}, s t k^{\prime}\right) \Longrightarrow$
$P^{\prime} @ P \vdash\left(\right.$ size $\left.P^{\prime}+i, s, s t k\right) \rightarrow\left(\right.$ size $\left.P^{\prime}+i^{\prime}, s^{\prime}, s t k^{\prime}\right)$
Proofs by cases.

Compiling bexp

Let $i n s$ be the compilation of b :

Do not put value of b on the stack

but let value of b determine where execution of ins ends.
Principle:

- Either execution leads to the end of ins
- or it jumps to offset $+n$ beyond ins.

Parameters: when to jump (if b is True or False) where to jump to (n)

$$
\text { bcomp }:: \text { bexp } \Rightarrow \text { bool } \Rightarrow \text { int } \Rightarrow \text { instr list }
$$

Example

$$
\begin{aligned}
\text { Let } b=\operatorname{And} & \left(\text { Less }\left(V^{\prime \prime} x^{\prime \prime}\right)\left(V^{\prime \prime} y^{\prime \prime}\right)\right) \\
& \left(\operatorname{Not}\left(\operatorname{Less}\left(V^{\prime \prime} z^{\prime \prime}\right)\left(V^{\prime \prime} a^{\prime \prime}\right)\right)\right) .
\end{aligned}
$$

bcomp b False 3 =
$\left[L O A D^{\prime \prime} x^{\prime \prime}\right.$,
$L O A D^{\prime \prime} y^{\prime \prime}$,
$L O A D^{\prime \prime} z^{\prime \prime}$,
$L O A D^{\prime \prime} a^{\prime \prime}$,

bcomp $::$ bexp \Rightarrow bool \Rightarrow int \Rightarrow instr list

bcomp (Not b) f $n=b c o m p b(\neg f) n$
bcomp $\left(\right.$ Less $\left.a_{1} a_{2}\right) f n=$
acomp a_{1} @
acomp a_{2} @ (if f then [JMPLESS n] else [JMPGE n])
bcomp $\left(\right.$ And $\left.b_{1} b_{2}\right) f n=$
let $c b_{2}=b c o m p b_{2} f n$;
$m=$ if f then size $c b_{2}$ else size $c b_{2}+n$;
$c b_{1}=$ bcomp b_{1} False m
in $c b_{1} @ c b_{2}$

Correctness of bcomp

$$
\begin{aligned}
& 0 \leq n \Longrightarrow \\
& b \operatorname{comp} b \mathrm{f} n \\
& \vdash(0, \text { s, stk }) \rightarrow * \\
& \quad(\text { size }(b \operatorname{comp} b \text { f } n)+(\text { if } f=\text { bval } b \text { s then } n \text { else } 0), \\
& \quad s, \text { stk })
\end{aligned}
$$

Compiling com

ccomp :: com \Rightarrow instr list
ccomp SKIP $=[]$
$\operatorname{ccomp}(x::=a)=a \operatorname{comp} a @[S T O R E x]$
$\operatorname{ccomp}\left(c_{1} ; ; c_{2}\right)=\operatorname{ccomp} c_{1} @ \operatorname{ccomp} c_{2}$
ccomp (IF b THEN c_{1} ELSE c_{2}) $=$
let $c c_{1}=\operatorname{comp} c_{1} ; c c_{2}=\operatorname{comp} c_{2}$; $c b=b c o m p$ False $\left(\right.$ size $\left.c c_{1}+1\right)$
in $c b @ c c_{1} @ J M P\left(s i z e ~ c c_{2}\right) \# c c_{2}$

ccomp $($ WHILE b DO c) $=$
let $c c=c c o m p ~ c ; c b=b c o m p ~ b$ False $($ size $c c+1)$ in $c b$ @ $c c @[J M P(-($ size $c b+$ size $c c+1))]$

Correctness of ccomp

If the source code produces a certain result, so should the compiled code:
$(c, s) \Rightarrow t \Longrightarrow$
ccomp $c \vdash(0, s, s t k) \rightarrow *($ size $($ ccomp $c), t, s t k)$
Proof by rule induction.

The other direction

We have only shown " \Longrightarrow ": compiled code simulates source code.
How about " \Longleftarrow ": source code simulates compiled code?
If ccomp c with start state s produces result t, and $\operatorname{if}(!)(c, s) \Rightarrow t^{\prime}$, then " \Longrightarrow " implies that ccomp c with start state s must also produce t^{\prime} and thus $t^{\prime}=t$ (why?).
But we have not ruled out this potential error:
c does not terminate but ccomp c does.

The other direction

Two approaches:

- In the absence of nondeterminism: Prove that ccomp preserves nontermination. A nice proof of this fact requires coinduction. Isabelle supports coinduction, this course avoids it.
- A direct proof: theory Compiler2
ccomp $c \vdash(0, s, s t k) \rightarrow *\left(\right.$ size $\left.(\operatorname{ccomp} c), t, s t k^{\prime}\right) \Longrightarrow$ $(c, s) \Rightarrow t$

Chapter 9

Types

(6) A Typed Version of IMP

(7) Security Type Systems
(6) A Typed Version of IMP

(7) Security Type Systems

(6) A Typed Version of IMP Remarks on Type Systems
Typed IMP: Semantics Typed IMP: Type System Type Safety of Typed IMP

Why Types?

To prevent mistakes, dummy!

There are 3 kinds of types

The Good Static types that guarantee absence of certain runtime faults.
Example: no memory access errors in Java.
The Bad Static types that have mostly decorative value but do not guarantee anything at runtime. Example: C, C++
The Ugly Dynamic types that detect errors when it can be too late.
Example: "TypeError: ..." in Python.

The ideal

Well-typed programs cannot go wrong.

Robin Milner, A Theory of Type Polymorphism in Programming, 1978.

The most influential slogan and one of the most influential papers in programming language theory.

What could go wrong?

(1) Corruption of data
(2) Null pointer exception
(3) Nontermination
(4) Run out of memory
© Secret leaked
© and many more...
There are type systems for everything (and more) but in practice (Java, C\#) only 1 is covered.

Type safety

A programming language is type safe if the execution of a well-typed program cannot lead to certain errors.

Java and the JVM have been proved to be type safe. (Note: Java exceptions are not errors!)

Correctness and completeness

Type soundness means that the type system is sound/correct w.r.t. the semantics:

If the type system says yes,
the semantics does not lead to an error.
The semantics is the primary definition, the type system must be justified w.r.t. it.

How about completeness? Remember Rice:
Nontrivial semantic properties of programs (e.g. termination) are undecidable.

Hence there is no decidable type system that accepts exactly the programs having a certain semantic property.

Automatic analysis of semantic program properties is necessarily incomplete.
(6) A Typed Version of IMP Remarks on Type Systems
Typed IMP: Semantics
Typed IMP: Type System Type Safety of Typed IMP

Arithmetic

Values:
datatype val $=I v$ int $\mid R v$ real
The state:
state $=$ vname \Rightarrow val
Arithmetic expresssions:
datatype $a \exp =$
Ic int \mid Rc real $\mid V$ vname \mid Plus aexp aexp

Why tagged values?

Because we want to detect if things "go wrong". What can go wrong? Adding integer and real! No automatic coercions.
Does this mean any implementation of IMP also needs to tag values?
No! Compilers compile only well-typed programs, and well-typed programs do not need tags.

Tags are only used to detect certain errors and to prove that the type system avoids those errors.

Evaluation of aexp

Not recursive function but inductive predicate:

$$
\begin{aligned}
& \text { taval }:: \text { aexp } \Rightarrow \text { state } \Rightarrow \text { val } \Rightarrow \text { bool } \\
& \text { taval (Ic i) s (Iv i) } \\
& \text { taval (Rcr)s(Rvr) } \\
& \text { taval }(V x) s(s x)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { taval } a_{1} s\left(R v r_{1}\right) \quad \text { taval } a_{2} s\left(R v r_{2}\right)}{\text { taval }\left(\text { Plus } a_{1} a_{2}\right) s\left(R v\left(r_{1}+r_{2}\right)\right)}
\end{aligned}
$$

Example: evaluation of Plus ($\left.V^{\prime \prime} x^{\prime \prime}\right)$ (Ic 1)
If $s^{\prime \prime} x^{\prime \prime}=I v i$:
$\frac{\text { taval }\left(V^{\prime \prime} x^{\prime \prime}\right) s(\text { Iv } i) \quad \text { taval }(\text { Ic 1) } s(\text { Iv } 1)}{\text { taval }\left(\text { Plus }\left(V^{\prime \prime} x^{\prime \prime}\right)(\text { Ic 1) }) s(\operatorname{Iv}(i+1))\right.}$
If $s^{\prime \prime} x^{\prime \prime}=R v r$: then there is no value v such that taval (Plus ($\left.V^{\prime \prime} x^{\prime \prime}\right)($ Ic 1)) s v.

The functional alternative

taval $::$ aexp \Rightarrow state \Rightarrow val option

Exercise!

Boolean expressions

Syntax as before. Semantics:

$$
\begin{aligned}
& \text { tbval :: bexp } \Rightarrow \text { state } \Rightarrow \text { bool } \Rightarrow \text { bool } \\
& \text { tbval (Bc v) s v } \\
& \text { tbval bs bv } \\
& \text { tbval (Not b) s (} \neg b v) \\
& \text { tbval } b_{1} s b v_{1} \quad \text { tbval } b_{2} s b v_{2} \\
& \text { tbval }\left(A n d b_{1} b_{2}\right) s\left(b v_{1} \wedge b v_{2}\right)
\end{aligned}
$$

com: big or small steps?

We need to detect if things "go wrong".

- Big step semantics:

Cannot model error by absence of final state.
Would confuse error and nontermination.
Could introduce an extra error-element, e.g. big_step $::$ com \times state \Rightarrow state option \Rightarrow bool Complicates formalization.

- Small step semantics:
error $=$ semantics gets stuck

Small step semantics

$$
\begin{gathered}
\frac{\text { taval as } v}{(x::=a, s) \rightarrow(S K I P, s(x:=v))} \\
\frac{\text { tbval } b s \text { True }}{\left(\text { IF b THEN } c_{1} E L S E ~ c_{2}, s\right) \rightarrow\left(c_{1}, s\right)} \\
\frac{\text { tbval b s False }}{\left(\text { IF b THEN } c_{1} \text { ELSE } c_{2}, s\right) \rightarrow\left(c_{2}, s\right)}
\end{gathered}
$$

The other rules remain unchanged.

Example

$$
\text { Let } c=\left({ }^{\prime \prime} x^{\prime \prime}::=\operatorname{Plus}\left(V^{\prime \prime} x^{\prime \prime}\right)(\text { Ic } 1)\right) \text {. }
$$

- If $s^{\prime \prime} x^{\prime \prime}=I v i$:
$(c, s) \rightarrow\left(S K I P, s\left({ }^{\prime \prime} x^{\prime \prime}:=I v(i+1)\right)\right)$
- If $s^{\prime \prime} x^{\prime \prime}=R v r$:
$(c, s) \nrightarrow$
(6) A Typed Version of IMP

Remarks on Type Systems
Typed IMP: Semantics
Typed IMP: Type System Type Safety of Typed IMP

Type system

There are two types:
datatype $t y=$ Ity \mid Rty
What is the type of Plus $\left(V^{\prime \prime} x^{\prime \prime}\right)\left(V^{\prime \prime} y^{\prime \prime}\right)$?
Depends on the type of " x " and " y "!
A type environment maps variable names to their types: tyenv $=$ vname $\Rightarrow t y$

The type of an expression is always relative to a type enviroment Γ. Standard notation:

$$
\Gamma \vdash e: \tau
$$

Read: In the context of Γ, e has type τ

The type of an exp

$$
\begin{gathered}
\Gamma \vdash a: \tau \\
\text { tyenv } \vdash a \exp : \text { ty }
\end{gathered}
$$

The rules:

$$
\begin{gathered}
\Gamma \vdash \text { Ic } i: \text { It } \\
\Gamma \vdash \text { Rc } r: \text { Rty } \\
\Gamma \vdash V x: \Gamma x \\
\frac{\Gamma \vdash a_{1}: \tau \quad \Gamma \vdash a_{2}: \tau}{\Gamma \vdash \text { Plus } a_{1} a_{2}: \tau}
\end{gathered}
$$

Example

$$
\frac{\vdots}{\Gamma \vdash P l u s\left(V^{\prime \prime} x^{\prime \prime}\right)\left(\text { Plus }\left(V^{\prime \prime} x^{\prime \prime}\right)(\text { Ic } 0)\right): ?}
$$

where $\Gamma^{\prime \prime} x^{\prime \prime}=$ Ity.

Well-typed bexp

Notation:

$$
\begin{gathered}
\Gamma \vdash b \\
\text { tyenv } \vdash \text { bexp }
\end{gathered}
$$

Read: In context Γ, b is well-typed.

The rules:

$$
\begin{gathered}
\Gamma \vdash B c v \\
\frac{\Gamma \vdash b}{\Gamma \vdash N o t b} \\
\frac{\Gamma \vdash b_{1} \quad \Gamma \vdash b_{2}}{\Gamma \vdash \text { And } b_{1} b_{2}} \\
\frac{\Gamma \vdash a_{1}: \tau \quad \Gamma \vdash a_{2}: \tau}{\Gamma \vdash \text { Less } a_{1} a_{2}}
\end{gathered}
$$

Example: $\quad \Gamma \vdash$ Less ($I c i$) (Rc r) does not hold.

Well-typed commands

Notation:

$$
\begin{gathered}
\Gamma \vdash c \\
\text { tyenv } \vdash \mathrm{com}
\end{gathered}
$$

Read: In context Γ, c is well-typed.

The rules:

$$
\begin{gathered}
\Gamma \vdash S K I P \quad \frac{\Gamma \vdash a: \Gamma x}{\Gamma \vdash x::=a} \\
\frac{\Gamma \vdash c_{1} \quad \Gamma \vdash c_{2}}{\Gamma \vdash c_{1} ; ; c_{2}} \\
\frac{\Gamma \vdash b \quad \Gamma \vdash c_{1} \quad \Gamma \vdash c_{2}}{\Gamma \vdash I F b \text { THEN } c_{1} E L S E c_{2}} \\
\frac{\Gamma \vdash b \quad \Gamma \vdash c}{\Gamma \vdash W H I L E b D O c}
\end{gathered}
$$

Syntax-directedness

All three sets of typing rules are syntax-directed:

- There is exactly one rule for each syntactic construct (SKIP, ::=, ...).
- Well-typedness of a term $C t_{1} \ldots t_{n}$ depends only on the well-typedness of its subterms t_{1}, \ldots, t_{n}.

A syntax-directed set of rules

- is executable by backchaining without backtracking and
- backchaining terminates and requires at most as many steps as the size of the term.

Syntax-directedness

The big-step semantics is not syntax-directed:

- more than one rule per construct and
- the execution of WHILE depends on the execution of WHILE.
(6) A Typed Version of IMP Remarks on Type Systems Typed IMP: Semantics Typed IMP: Type System Type Safety of Typed IMP

Well-typed states

Even well-typed programs can get stuck ...
... if they start in an unsuitable state.
Remember:
If $s^{\prime \prime} x^{\prime \prime}=R v r$
then $\left(" x^{\prime \prime}::=\right.$ Plus $\left(V^{\prime \prime} x^{\prime \prime}\right)($ Ic 1),$s) \nrightarrow$
The state must be well-typed w.r.t. Γ.

The type of a value:
type $(I v i)=I t y$
type $(R v r)=R t y$
Well-typed state:
$\Gamma \vdash s \longleftrightarrow(\forall x$. type $(s x)=\Gamma x)$

Type soundness

Reduction cannot get stuck:
If everything is ok ($\Gamma \vdash s, \Gamma \vdash c$),
and you take a finite number of steps,
and you have not reached SKIP, then you can take one more step.

Follows from progress:
If everything is ok and you have not reached SKIP, then you can take one more step.
and preservation:
If everything is ok and you take a step, then everything is ok again.

The slogan

Progress \wedge Preservation \Longrightarrow Type safety

Progress Well-typed programs do not get stuck.
Preservation Well-typedness is preserved by reduction.
Preservation: Well-typedness is an invariant.

Progress:
$\llbracket \Gamma \vdash c ; \Gamma \vdash s ; c \neq S K I P \rrbracket \Longrightarrow \exists c s^{\prime} .(c, s) \rightarrow c s^{\prime}$
Preservation:
$\llbracket(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) ; \Gamma \vdash c ; \Gamma \vdash s \rrbracket \Longrightarrow \Gamma \vdash s^{\prime}$
$\llbracket(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) ; \Gamma \vdash c \rrbracket \Longrightarrow \Gamma \vdash c^{\prime}$
Type soundness:
$\llbracket(c, s) \rightarrow *\left(c^{\prime}, s^{\prime}\right) ; \Gamma \vdash c ; \Gamma \vdash s ; c^{\prime} \neq S K I P \rrbracket$
$\Longrightarrow \exists c s^{\prime \prime} .\left(c^{\prime}, s^{\prime}\right) \rightarrow c s^{\prime \prime}$

bexp

Progress:

$$
\llbracket \Gamma \vdash b ; \Gamma \vdash s \rrbracket \Longrightarrow \exists v \text {. tbval } b s v
$$

aexp

Progress:

$\llbracket \Gamma \vdash a: \tau ; \Gamma \vdash s \rrbracket \Longrightarrow \exists v$. taval a s v
Preservation:
$\llbracket \Gamma \vdash a: \tau ;$ taval a s $v ; \Gamma \vdash s \rrbracket \Longrightarrow$ type $v=\tau$

All proofs by rule induction.

Types.thy

The mantra

Type systems have a purpose:
The static analysis of programs
in order to predict their runtime behaviour.
The correctness of the prediction must be provable.

(6) A Typed Version of IMP

(7) Security Type Systems

The aim:
Ensure that programs protect private data like passwords, bank details, or medical records.
There should be no information flow
from private data into public channels.
This is know as information flow control.

Language based security is an approach to information flow control where data flow analysis is used to determine whether a program is free of illicit information flows.

LBS guarantees confidentiality by program analysis, not by cryptography.

These analyses are often expressed as type systems.

Security levels

- Program variables have security/confidentiality levels.
- Security levels are partially ordered: $l<l^{\prime}$ means that l is less confidential than l^{\prime}.
- We identify security levels with nat. Level 0 is public.
- Other popular choices for security levels:
- only two levels, high and low.
- the set of security levels is a lattice.

Two kinds of illicit flows

Explicit: low := high
Implicit: if high1 = high2 then low := 1 else low := 0

Noninterference

High variables do not interfere with low ones.
A variation of confidential input does not cause a variation of public output.
Program c guarantees noninterference iff for all s_{1}, s_{2} :
If s_{1} and s_{2} agree on low variables
(but may differ on high variables!),
then the states resulting from executing $\left(c, s_{1}\right)$
and $\left(c, s_{2}\right)$ must also agree on low variables.
(7) Security Type Systems Secure IMP
A Security Type System
A Type System with Subsumption
A Bottom-Up Type System
Beyond

Security Levels

Security levels:
type_synonym level $=$ nat
Every variable has a security level:
sec :: vname \Rightarrow level
No definition is needed. Except for examples. Hence we define (arbitrarily)
$\sec x=$ length x

Security Levels on aexp

The security level of an expression is the maximal security level of any of its variables.

$$
\begin{aligned}
& \text { sec }:: \text { aexp } \Rightarrow \text { level } \\
& \sec (N n)=0 \\
& \sec (V x)=\sec x \\
& \sec \left(\text { Plus } a_{1} a_{2}\right)=\max \left(\sec a_{1}\right)\left(\sec a_{2}\right)
\end{aligned}
$$

Security Levels on bexp

```
sec :: bexp \(\Rightarrow\) level
\(\sec (B c v)=0\)
\(\sec (\) Not \(b)=\sec b\)
\(\sec \left(A n d b_{1} b_{2}\right)=\max \left(\sec b_{1}\right)\left(\sec b_{2}\right)\)
\(\sec \left(\right.\) Less \(\left.a_{1} a_{2}\right)=\max \left(\sec a_{1}\right)\left(\sec a_{2}\right)\)
```


Security Levels on States

Agreement of states up to a certain level:

$$
\begin{aligned}
s_{1}=s_{2}(\leq l) & \equiv \forall x . \sec x \leq l \longrightarrow s_{1} x=s_{2} x \\
s_{1}=s_{2}(<l) & \equiv \forall x . \sec x<l \longrightarrow s_{1} x=s_{2} x
\end{aligned}
$$

Noninterference lemmas for expressions:

$$
\begin{aligned}
& \frac{s_{1}=s_{2}(\leq l) \quad \text { sec } a \leq l}{\text { aval a } s_{1}=\text { aval a } s_{2}} \\
& \frac{s_{1}=s_{2}(\leq l) \quad \text { sec } b \leq l}{\text { bval } b s_{1}=\text { bval } b s_{2}}
\end{aligned}
$$

(7) Security Type Systems

Secure IMP

A Security Type System
A Type System with Subsumption
A Bottom-Up Type System
Beyond

Security Type System

Explicit flows are easy. How to check for implicit flows:
Carry the security level of the boolean expressions around that guard the current command.
The well-typedness predicate:

$$
l \vdash c
$$

Intended meaning:
"In the context of boolean expressions of level $\leq l$, command c is well-typed."

Hence:
"Assignments to variables of level $<l$ are forbidden."

Well-typed or not?

$$
\begin{aligned}
\text { Let } c= & \text { IF Less }\left(V^{\prime \prime} x 1^{\prime \prime}\right)\left(V^{\prime \prime} x^{\prime}\right) \\
& \text { THEN " } x 1^{\prime \prime}::=N 0 \\
& E L S E{ }^{\prime \prime} x 1^{\prime \prime}::=N 1
\end{aligned}
$$

$$
1 \vdash c \quad ? \quad Y e s
$$

$$
2 \vdash c \quad ? \quad Y e s
$$

$$
3 \vdash c \quad \text { ? }
$$

The type system

$$
l \vdash S K I P
$$

$$
\frac{\sec a \leq \sec x \quad l \leq \sec x}{l \vdash x::=a}
$$

$$
\frac{l \vdash c_{1} \quad l \vdash c_{2}}{l \vdash c_{1} ; ; c_{2}}
$$

$$
\begin{gathered}
\frac{\max (\sec b) l \vdash c_{1} \quad \max (\sec b) l \vdash c_{2}}{l \vdash I F b T H E N c_{1} E L S E c_{2}} \\
\frac{\max (\sec b) l \vdash c}{l \vdash \text { WHILE } b \text { DO } c}
\end{gathered}
$$

Remark:
$l \vdash c$ is syntax-directed and executable.

Anti-monotonicity

$$
\frac{l \vdash c \quad l^{\prime} \leq l}{l^{\prime} \vdash c}
$$

Proof by ... as usual.
This is often called a subsumption rule because it says that larger levels subsume smaller ones.

Confinement

If $l \vdash c$ then c cannot modify variables of level $<l$:

$$
\frac{(c, s) \Rightarrow t \quad l \vdash c}{s=t(<l)}
$$

The effect of c is confined to variables of level $\geq l$.
Proof by ... as usual.

Noninterference

$$
\frac{(c, s) \Rightarrow s^{\prime} \quad(c, t) \Rightarrow t^{\prime} \quad 0 \vdash c \quad s=t(\leq l)}{s^{\prime}=t^{\prime}(\leq l)}
$$

Proof by ... as usual.
(7) Security Type Systems

Secure IMP

A Security Type System
A Type System with Subsumption A Bottom-Up Type System Beyond

The $l \vdash c$ system is intuitive and executable

- but in the literature a more elegant formulation is dominant
- which does not need max
- and works for arbitrary partial orders.

This alternative system $l \vdash^{\prime} c$ has an explicit subsumption rule

$$
\frac{l \vdash^{\prime} c \quad l^{\prime} \leq l}{l^{\prime} \vdash^{\prime} c}
$$

together with one rule per construct:

$$
\begin{gathered}
l \vdash^{\prime} S K I P \\
\frac{\text { sec } a \leq \sec x \quad l \leq \sec x}{l \vdash^{\prime} x::=a} \\
\frac{l \vdash^{\prime} c_{1} \quad l \vdash^{\prime} c_{2}}{l \vdash^{\prime} c_{1} ; ; c_{2}} \\
\frac{\sec b \leq l \quad l \vdash^{\prime} c_{1} \quad l \vdash^{\prime} c_{2}}{l \vdash^{\prime} I F b T H E N c_{1} E L S E c_{2}} \\
\frac{\sec b \leq l \quad l \vdash^{\prime} c}{l \vdash^{\prime} W H I L E b D O c}
\end{gathered}
$$

- The subsumption-based system \vdash^{\prime} is neither syntax-directed nor directly executable.
- Need to guess when to use the subsumption rule.

Equivalence of \vdash and \vdash^{\prime}

$$
l \vdash c \Longrightarrow l \vdash^{\prime} c
$$

Proof by induction.
Use subsumption directly below $I F$ and WHILE.

$$
l \vdash^{\prime} c \Longrightarrow l \vdash c
$$

Proof by induction. Subsumption already a lemma for \vdash.
(7) Security Type Systems

Secure IMP

A Security Type System
A Type System with Subsumption
A Bottom-Up Type System
Beyond

- Systems $l \vdash c$ and $l \vdash^{\prime} c$ are top-down: level l comes from the context and is checked at $::=$ commands.
- System $\vdash c: l$ is bottom-up:
l is the minimal level of any variable assigned in c and is checked at $I F$ and WHILE commands.

\vdash SKIP : l

$$
\begin{gathered}
\frac{\sec a \leq \sec x}{\vdash x::=a: \sec x} \\
\frac{\vdash c_{1}: l_{1} \quad \vdash c_{2}: l_{2}}{\vdash c_{1} ; ; c_{2}: \min l_{1} l_{2}}
\end{gathered}
$$

$$
\sec b \leq \min l_{1} l_{2} \quad \vdash c_{1}: l_{1} \quad \vdash c_{2}: l_{2}
$$

$$
\vdash I F \text { b THEN } c_{1} E L S E c_{2}: \min l_{1} l_{2}
$$

$$
\sec b \leq l \quad \vdash c: l
$$

$$
\overline{\vdash W H I L E ~ b D O ~ c: l}
$$

Equivalence of \vdash : and \vdash^{\prime}

$$
\vdash c: l \Longrightarrow l \vdash^{\prime} c
$$

Proof by induction.

$$
l \vdash^{\prime} c \Longrightarrow \vdash c: l
$$

Nitpick: $0 \vdash^{\prime}{ }^{\prime \prime} x^{\prime \prime}::=N 1$ but not $\vdash{ }^{\prime \prime} x^{\prime \prime}::=N 1: 0$

$$
l \vdash^{\prime} c \Longrightarrow \exists l^{\prime} \geq l . \vdash c: l^{\prime}
$$

Proof by induction.
(7) Security Type Systems

Secure IMP

A Security Type System
A Type System with Subsumption
A Bottom-Up Type System
Beyond

Does noninterference really guarantee absence of information flow?

$$
\frac{(c, s) \Rightarrow s^{\prime} \quad(c, t) \Rightarrow t^{\prime} \quad 0 \vdash c \quad s=t(\leq l)}{s^{\prime}=t^{\prime}(\leq l)}
$$

Beware of covert channels!

$$
0 \vdash \text { WHILE Less }\left(V^{\prime \prime} x^{\prime \prime}\right)(N 1) D O \text { SKIP }
$$

A drastic solution:

WHILE-conditions must not depend on

 confidential data.New typing rule:

$$
\frac{\text { sec } b=0 \quad 0 \vdash c}{0 \vdash W H I L E b D O c}
$$

Now provable:

$$
\frac{(c, s) \Rightarrow s^{\prime} \quad 0 \vdash c \quad s=t(\leq l)}{\exists t^{\prime} .(c, t) \Rightarrow t^{\prime} \wedge s^{\prime}=t^{\prime}(\leq l)}
$$

Further extensions

- Time
- Probability
- Quantitative analysis
- More programming language features:
- exceptions
- concurrency
- 00

Literature

The inventors of security type systems are Volpano and Smith.

For an excellent survey see
Sabelfeld and Myers. Language-Based Information-Flow Security. 2003.

Chapter 10

Data-Flow Analyses and Optimization

8 Definite Initialization Analysis

(9) Live Variable Analysis

8 Definite Initialization Analysis

(9) Live Variable Analysis

Each local variable must have a definitely assigned value when any access of its value occurs. A compiler must carry out a specific conservative flow analysis to make sure that, for every access of a local variable x, x is definitely assigned before the access; otherwise a compile-time error must occur.
Java Language Specification
Java was the first language to force programmers to initialize their variables.

Examples: ok or not?

Assume x is initialized:
IF $\mathrm{x}<1$ THEN y := x ELSE y := $\mathrm{x}+1$;
$\mathrm{y}:=\mathrm{y}+1$
IF $\mathrm{x}<\mathrm{x}$ THEN $\mathrm{y}:=\mathrm{y}+1$ ELSE $\mathrm{y}:=\mathrm{x}$
Assume x and y are initialized:
WHILE x < y DO z := x; z := z + 1

Simplifying principle

We do not analyze boolean expressions to determine program execution.

8 Definite Initialization Analysis Prelude: Variables in Expressions Definite Initialization Analysis Initialization Sensitive Semantics

Theory Vars provides an overloaded function vars:

```
vars :: aexp }=>\mathrm{ vname set
vars (N n) = {}
vars (V x) ={x}
vars (Plus }\mp@subsup{a}{1}{}\mp@subsup{a}{2}{})=\mathrm{ vars }\mp@subsup{a}{1}{}\cup\mathrm{ vars }\mp@subsup{a}{2}{
vars :: bexp }=>\mathrm{ vname set
vars (Bc v) ={}
vars (Not b) = vars b
vars (And b b b b ) = vars b}\mp@subsup{b}{1}{}\cup\mathrm{ vars b}\mp@subsup{b}{2}{
vars (Less }\mp@subsup{a}{1}{}\mp@subsup{a}{2}{})=vvars \mp@subsup{a}{1}{}\cup\mathrm{ vars }\mp@subsup{a}{2}{
```

Vars.thy

8 Definite Initialization Analysis

Prelude: Variables in Expressions
 Definite Initialization Analysis

Initialization Sensitive Semantics

Modified example from the JLS:
Variable x is definitely initialized after SKIP iff x is definitely initialized before SKIP.
Similar statements for each language construct.
$D::$ vname set \Rightarrow com \Rightarrow vname set \Rightarrow bool
$D A c A^{\prime}$ should imply:
If all variables in A are initialized before c is executed, then no uninitialized variable is accessed during execution, and all variables in A^{\prime} are initialized afterwards.

$$
\begin{gathered}
D A \text { SKIP } A \\
\frac{v a r s ~ a \subseteq A}{D A(x::=a)(\text { insert } x A)} \\
\frac{D A_{1} c_{1} A_{2} \quad D A_{2} c_{2} A_{3}}{D A_{1}\left(c_{1} ; c_{2}\right) A_{3}} \\
\text { vars } b \subseteq A \quad D A c_{1} A_{1} D A c_{2} A_{2} \\
D A\left(I F b \text { THEN } c_{1} E L S E c_{2}\right)\left(A_{1} \cap A_{2}\right) \\
\frac{v a r s ~}{D \subseteq A \quad D A c A^{\prime}}
\end{gathered}
$$

Correctness of D

- Things can go wrong: execution may access uninitialized variable.
\Longrightarrow We need a new, finer-grained semantics.
- Big step semantics: semantics longer, correctness proof shorter
- Small step semantics: semantics shorter, correctness proof longer
For variety's sake, we choose a big step semantics.

8 Definite Initialization Analysis

Prelude: Variables in Expressions
 Definite Initialization Analysis
 Initialization Sensitive Semantics

$$
\text { state }=\text { vname } \Rightarrow \text { val option }
$$

where
datatype 'a option $=$ None \mid Some 'a
Notation: $s(x \mapsto y)$ means $s(x:=$ Some $y)$
Definition: dom $s=\{a . s a \neq$ None $\}$

Expression evaluation

aval $::$ aexp \Rightarrow state \Rightarrow val option
$\operatorname{aval}(N i) s=S o m e i$
aval $(V x) s=s x$
aval (Plus $a_{1} a_{2}$) $s=$
(case (aval $a_{1} s$, aval $a_{2} s$) of
(Some i_{1}, Some $\left.i_{2}\right) \Rightarrow \operatorname{Some}\left(i_{1}+i_{2}\right)$
| \Rightarrow None)
bval $::$ bexp \Rightarrow state \Rightarrow bool option
oval (Bc v) s=Some v
bval (Not b) $s=$
(case bval bs of None \Rightarrow None
| Some bu \Rightarrow Some ($\neg b v)$)
oval $\left(\right.$ And $\left.b_{1} b_{2}\right) s=$
(case (oval $b_{1} s$, oval $b_{2} s$) of
$\left(\right.$ Some $b v_{1}$, Some $\left.b v_{2}\right) \Rightarrow \operatorname{Some}\left(b v_{1} \wedge b v_{2}\right)$
| \Rightarrow None)
oval (Less $\left.a_{1} a_{2}\right) s=$
(case (laval $a_{1} s$, aval $a_{2} s$) of
(Some i_{1}, Some i_{2}) $\Rightarrow \operatorname{Some}\left(i_{1}<i_{2}\right)$
| \Rightarrow None)

Big step semantics

$$
(\text { com }, \text { state }) \Rightarrow \text { state option }
$$

A small complication:

$$
\begin{gathered}
\left(c_{1}, s_{1}\right) \Rightarrow \text { Some } s_{2} \quad\left(c_{2}, s_{2}\right) \Rightarrow s \\
\left(c_{1} ; ; c_{2}, s_{1}\right) \Rightarrow s \\
\frac{\left(c_{1}, s_{1}\right) \Rightarrow \text { None }}{\left(c_{1} ; ; c_{2}, s_{1}\right) \Rightarrow \text { None }}
\end{gathered}
$$

More convenient, because compositional:

$$
(\text { com }, \text { state option }) \Rightarrow \text { state option }
$$

Error (None) propagates:

$$
(c, \text { None }) \Rightarrow \text { None }
$$

SKIP propagates:

$$
\begin{gathered}
(\text { SKIP, } s) \Rightarrow s \\
\frac{\text { aval a } s=\text { Some } i}{(x::=a, \text { Some } s) \Rightarrow \text { Some }(s(x \mapsto i))} \\
\frac{\text { aval a } s=\text { None }}{(x::=a, \text { Some } s) \Rightarrow \text { None }} \\
\frac{\left(c_{1}, s_{1}\right) \Rightarrow s_{2} \quad\left(c_{2}, s_{2}\right) \Rightarrow s_{3}}{\left(c_{1} ; ; c_{2}, s_{1}\right) \Rightarrow s_{3}}
\end{gathered}
$$

bval bs=Some True $\quad\left(c_{1}\right.$, Some $\left.s\right) \Rightarrow s^{\prime}$ (IF b THEN c_{1} ELSE c_{2}, Some s) $\Rightarrow s^{\prime}$
bval bs$=$ Some False $\quad\left(c_{2}\right.$, Some $\left.s\right) \Rightarrow s^{\prime}$
(IF b THEN c_{1} ELSE c_{2}, Some $\left.s\right) \Rightarrow s^{\prime}$

$$
\text { bval b } s=\text { None }
$$

$\overline{\left(\text { IF } b \text { THEN } c_{1} \text { ELSE } c_{2} \text {, Some } s\right) \Rightarrow \text { None }}$

$$
\frac{b v a l b s=\text { Some False }}{(\text { WHILE b DO c, Some s) } \Rightarrow \text { Some } s}
$$

$$
\begin{gathered}
\text { bval } b s=\text { Some True } \quad(c, \text { Some } s) \Rightarrow s^{\prime} \\
\left(\text { WHILE bDO } c, s^{\prime}\right) \Rightarrow s^{\prime \prime} \\
(\text { WHILE } b \text { DO } c, \text { Some } s) \Rightarrow s^{\prime \prime} \\
\text { bval } b s=\text { None }
\end{gathered}
$$

$$
\overline{(W H I L E} b \text { DO } c, \text { Some } s) \Rightarrow \text { None }
$$

Correctness of D w.r.t. \Rightarrow

We want in the end:
Well-initialized programs cannot go wrong. If $D($ dom $s) c A^{\prime}$ and $(c$, Some $s) \Rightarrow s^{\prime}$ then $s^{\prime} \neq$ None.
We need to prove a generalized statement:
If $(c$, Some $s) \Rightarrow s^{\prime}$ and $D A c A^{\prime}$ and $A \subseteq \operatorname{dom} s$ then $\exists t . s^{\prime}=$ Some $t \wedge A^{\prime} \subseteq$ dom t.

By rule induction on $(c$, Some $s) \Rightarrow s^{\prime}$.

Proof needs some easy lemmas:

$$
\begin{aligned}
& \text { vars } a \subseteq \operatorname{dom} s \Longrightarrow \exists i . \text { aval a } s=\text { Some } i \\
& \text { vars } b \subseteq \operatorname{dom} s \Longrightarrow \exists \text { bv. bval } b s=\text { Some } b v \\
& D A \subset A^{\prime} \Longrightarrow A \subseteq A^{\prime}
\end{aligned}
$$

(8) Definite Initialization Analysis

(9) Live Variable Analysis

Motivation

Consider the following program:

$$
\begin{aligned}
& \mathrm{x}:=\mathrm{y}+1 ; \\
& \mathrm{y}:=\mathrm{y}+2 ; \\
& \mathrm{x}:=\mathrm{y}+3
\end{aligned}
$$

The first assignment is redundant and can be removed because x is dead at that point.

Semantically, a variable x is live before command c if the initial value of x can influence the final state.

A weaker but easier to check condition:
We call x live before c
if there is some potential execution of c
where x is read before it can be overwritten. Implicitly, every variable is read at the end of c.

Examples: Is x initially dead or live?
$\mathrm{x}:=0$
$\mathrm{y}:=\mathrm{x} ; \mathrm{y}:=0 ; \mathrm{x}:=0$
WHILE b DO y := x ; $\mathrm{x}:=1$

At the end of a command, we may be interested in the value of only some of the variables, e.g. only the global variables at the end of a procedure.

Then we say that x is live before c relative to the set of variables X.

Liveness analysis

$L::$ com \Rightarrow vname set \Rightarrow vname set

$$
\text { Lc } X=\text { live before } c \text { relative to } X
$$

L SKIP X $=X$
$L(x::=a) X=$ vars $a \cup(X-\{x\})$
$L\left(c_{1} ; c_{2}\right) X=L c_{1}\left(L c_{2} X\right)$
L (IF b THEN $c_{1} E L S E c_{2}$) $X=$ vars $b \cup L c_{1} X \cup L c_{2} X$

Example:

$$
\begin{aligned}
L\left({ }^{\prime \prime} y^{\prime \prime}::\right. & \left.=V^{\prime \prime} z^{\prime \prime \prime} ;{ }^{\prime \prime} x^{\prime \prime}::=\operatorname{Plus}\left(V^{\prime \prime} y^{\prime \prime}\right)\left(V^{\prime \prime} z^{\prime \prime}\right)\right) \\
\left\{{ }^{\prime \prime} x^{\prime \prime}\right\} & =\left\{^{\prime \prime} z^{\prime \prime}\right\}
\end{aligned}
$$

WHILE b DO c

$L w X$ must satisfy
vars $b \subseteq L w X$ (evaluation of b)
$X \quad \subseteq L w X$ (exit)
$L c(L w X) \subseteq L w X$ (execution of c)

We define

$$
L(\text { WHILE } b D O \text { c) } X=\text { vars } b \cup X \cup L c X
$$

[^0]L SKIP X $=$ X
$L(x::=a) X=$ vars $a \cup(X-\{x\})$
$L\left(c_{1} ; c_{2}\right) X=L c_{1}\left(L c_{2} X\right)$
$L\left(I F b T H E N ~ c_{1} E L S E c_{2}\right) X=$ vars $b \cup L c_{1} X \cup L c_{2} X$
$L($ WHILE $b D O c) X=$ vars $b \cup X \cup L c X$
Example:
$L\left(\right.$ WHILE Less $\left.\left(V^{\prime \prime} x^{\prime \prime}\right)\left(V^{\prime \prime} x^{\prime \prime}\right) D O^{\prime \prime} y^{\prime \prime}::=V^{\prime \prime} z^{\prime \prime}\right)$ $\left\{{ }^{\prime \prime} x^{\prime \prime}\right\}=\left\{{ }^{\prime \prime} x^{\prime \prime},{ }^{\prime \prime} z^{\prime \prime}\right\}$

Gen/kill analyses

A data-flow analysis $A::$ com $\Rightarrow \tau$ set $\Rightarrow \tau$ set is called gen/kill analysis
if there are functions gen and kill such that

$$
A c X=X-\text { kill } c \cup \text { gen } c
$$

Gen/kill analyses are extremely well-behaved, e.g.

$$
\begin{gathered}
X_{1} \subseteq X_{2} \Longrightarrow A c X_{1} \subseteq A c c X_{2} \\
A c\left(X_{1} \cap X_{2}\right)=A c X_{1} \cap A c X_{2}
\end{gathered}
$$

Many standard data-flow analyses are gen/kill. In particular liveness analysis.

Liveness via gen/kill

kill :: com \Rightarrow vname set
kill SKIP
kill ($x::=a$)
kill $\left(c_{1} ; ; c_{2}\right)=$ kill $c_{1} \cup$ kill c_{2} kill (IF b THEN $c_{1} E L S E c_{2}$) $=$ kill $c_{1} \cap$ kill c_{2} kill (WHILE b DO c)

$$
\begin{aligned}
& =\{ \} \\
& =\{x\} \\
& =\text { kill } c_{1} \cup \text { kill } c_{2} \\
& =\text { kill } c_{1} \cap \text { kill } c_{2} \\
& =\{ \}
\end{aligned}
$$

gen $::$ com \Rightarrow vname set
gen SKIP $=\{ \}$
gen $(x::=a)=$ vars a
gen $\left(c_{1} ; ; c_{2}\right)=$ gen $c_{1} \cup\left(\right.$ gen $c_{2}-$ kill $\left.c_{1}\right)$
gen (IF b THEN c_{1} ELSE c_{2}) =
vars $b \cup$ gen $c_{1} \cup$ gen c_{2}
gen $($ WHILE $b D O c)=$ vars $b \cup$ gen c

$$
L c X=\operatorname{gen} c \cup(X-\text { kill } c)
$$

Proof by induction on c.

$$
L c(L w X) \subseteq L w X
$$

Digression:

definite initialization via gen/kill

A $c X$: the set of variables initialized after c if X was initialized before c

How to obtain $A c X=X-$ kill $c \cup$ gen c :

```
gen SKIP
\[
\operatorname{gen}(x::=a)
\]
gen (x ::= a)
\[
\operatorname{gen}\left(c_{1} ; ; c_{2}\right)
\]
gen ( }\mp@subsup{c}{1}{};;\mp@subsup{c}{2}{}
\[
\text { gen }\left(\operatorname{IF} b \text { THEN } c_{1} \text { ELSE } c_{2}\right)=\text { gen } c_{1} \cap \text { gen } c_{2}
\]
gen (IF b THEN c
gen (WHILE b DO c)
gen(WHILE b DO c)
= {}
\[
\text { kill } c=\{ \}
\]
kill c = {}
\[
\begin{aligned}
& =\{ \} \\
& =\{x\} \\
& =\text { gen } \\
& =\text { gen } \\
& =\{ \}
\end{aligned}
\]
```

(9) Live Variable Analysis

Correctness of L
Dead Variable Elimination
True Liveness
Comparisons
$(. ..) \Rightarrow$. and L should roughly be related like this:
The value of the final state on X
only depends on
the value of the initial state on $L c X$.
Put differently:
If two initial states agree on L c X
then the corresponding final states agree on X.

Equality on

An abbreviation:

$$
f=g \text { on } X \equiv \forall x \in X . f x=g x
$$

Two easy theorems (in theory Vars):

$$
\begin{aligned}
& s_{1}=s_{2} \text { on vars } a \Longrightarrow \text { aval a } s_{1}=\text { aval a } s_{2} \\
& s_{1}=s_{2} \text { on vars } b \Longrightarrow \text { bval } b s_{1}=\text { bval } b s_{2}
\end{aligned}
$$

Correctness of L

$$
\begin{aligned}
& \text { If }(c, s) \Rightarrow s^{\prime} \text { and } s=t \text { on } L c X \\
& \text { then } \exists t^{\prime} .(c, t) \Rightarrow t^{\prime} \wedge s^{\prime}=t^{\prime} \text { on } X .
\end{aligned}
$$

Proof by rule induction.
For the two WHILE cases we do not need the definition of $L w$ but only the characteristic property

$$
\text { vars } b \cup X \cup L c(L w X) \subseteq L w X
$$

Optimality of $L w$

The result of L should be as small as possible: the more dead variables, the better (for program optimization). $L w X$ should be the least set such that vars $b \cup X \cup L c(L w X) \subseteq L w X$.
Follows easily from $L c X=$ gen $c \cup(X-$ kill $c)$:

$$
\begin{aligned}
& \text { vars } b \cup X \cup L \text { c } P \subseteq P \Longrightarrow \\
& L(\text { WHILE b DO c) } X \subseteq P
\end{aligned}
$$

(9) Live Variable Analysis

Correctness of L
Dead Variable Elimination
True Liveness
Comparisons

Bury all assignments to dead variables:
bury $::$ com \Rightarrow vname set \Rightarrow com
bury SKIP $X=$ SKIP
bury $(x::=a) X=$ if $x \in X$ then $x::=a$ else SKIP bury $\left(c_{1} ; ; c_{2}\right) X=$ bury $c_{1}\left(L c_{2} X\right) ;$ bury $c_{2} X$ bury (IF b THEN $c_{1} E L S E c_{2}$) $X=$ IF b THEN bury $c_{1} X$ ELSE bury $c_{2} X$ bury (WHILE b DO c) $X=$

WHILE b DO bury c (L (WHILE b DO c) X)

Correctness of bury

$$
\text { bury c UNIV } \sim c
$$

where $U N I V$ is the set of all variables.
The two directions need to be proved separately.

$$
(c, s) \Rightarrow s^{\prime} \Longrightarrow(\text { bury } c \text { UNIV, } s) \Rightarrow s^{\prime}
$$

Follows from generalized statement:

$$
\begin{aligned}
& \text { If }(c, s) \Rightarrow s^{\prime} \text { and } s=t \text { on } L c X \\
& \text { then } \exists t^{\prime} .(\text { bury } c X, t) \Rightarrow t^{\prime} \wedge s^{\prime}=t^{\prime} \text { on } X .
\end{aligned}
$$

Proof by rule induction, like for correctness of L.

$$
\text { (bury } c \text { UNIV, s) } \Rightarrow s^{\prime} \Longrightarrow(c, s) \Rightarrow s^{\prime}
$$

Follows from generalized statement:

$$
\begin{aligned}
& \text { If }(\text { bury } c X, s) \Rightarrow s^{\prime} \text { and } s=t \text { on } L c X \\
& \text { then } \exists t^{\prime} .(c, t) \Rightarrow t^{\prime} \wedge s^{\prime}=t^{\prime} \text { on } X .
\end{aligned}
$$

Proof very similar to other direction, but needs inversion lemmas for bury for every kind of command, e.g.
$\left(b c_{1} ; ; b c_{2}=\right.$ bury $\left.c X\right)=$
($\exists c_{1} c_{2}$.

$$
\begin{aligned}
& c=c_{1} ; ; c_{2} \wedge \\
& \left.b c_{2}=\text { bury } c_{2} X \wedge b c_{1}=\text { bury } c_{1}\left(L c_{2} X\right)\right)
\end{aligned}
$$

(9) Live Variable Analysis

Correctness of L
Dead Variable Elimination
True Liveness
Comparisons

Terminology

Let $f:: \tau \Rightarrow \tau$ and $x:: \tau$.
If $f x=x$ then x is a fixpoint of f.
Let \leq be a partial order on τ, eg \subseteq on sets.
If $f x \leq x$ then x is a pre-fixpoint (pfp) of f.
If $x \leq y \Longrightarrow f x \leq f y$ for all x, y, then f is monotone.

Application to $L w$

Remember the specification of $L w$:

$$
\text { vars } b \cup X \cup L c(L w X) \subseteq L w X
$$

This is the same as saying that $L w X$ should be a pfp of

$$
\lambda P . \text { vars } b \cup X \cup L c P
$$

and in particular of $L c$.

True liveness

$L\left(" x^{\prime \prime}::=V^{\prime \prime} y^{\prime \prime}\right)\left\}=\left\{" y^{\prime \prime}\right\}\right.$
But " y " is not truly live: it is assigned to a dead variable.
Problem: $L(x::=a) X=$ vars $a \cup(X-\{x\})$
Better:
$L(x::=a) X=$
(if $x \in X$ then vars $a \cup(X-\{x\})$ else X)
But then
$L($ WHILE b DO c) $X=$ vars $b \cup X \cup L c X$
is not correct anymore.
$L(x::=a) X=$
(if $x \in X$ then vars $a \cup(X-\{x\})$ else X)
$L($ WHILE $b D O$ c) $X=$ vars $b \cup X \cup L c X$
Let $w=$ WHILE b DO c
where $b=\operatorname{Less}(N 0)(V y)$
and $c=y::=V x ; x::=V z$
and distinct $[x, y, z]$
Then $L w\{y\}=\{x, y\}$, but z is live before w !
$\{x\} \quad y::=V x \quad\{y\} \quad x::=V z\{y\}$
$\Longrightarrow L w\{y\}=\{y\} \cup\{y\} \cup\{x\}$
$b=$ Less $\left(\begin{array}{l}N 0)(V y)\end{array}\right.$
$c=y::=V x ; x::=V z$
$L w\{y\}=\{x, y\}$ is not a fp of $L c$:
$\{x, z\} \quad y::=V x\{y, z\} x::=V z\{x, y\}$
$L c\{x, y\}=\{x, z\} \nsubseteq\{x, y\}$

$L w$ for true liveness

Define $L w X$ as the least pfp of

 λP. vars $b \cup X \cup L c P$
Existence of least fixpoints

Theorem (Knaster-Tarski) Let $f:: \tau$ set $\Rightarrow \tau$ set. If f is monotone $(X \subseteq Y \Longrightarrow f(X) \subseteq f(Y)$) then

$$
l f p(f):=\bigcap\{P \mid f(P) \subseteq P\}
$$

is the least pre-fixpoint and least fixpoint of f.

Proof of Knaster-Tarski

Theorem If $f:: \tau$ set $\Rightarrow \tau$ set is monotone then $l f p(f):=\bigcap\{P \mid f(P) \subseteq P\}$ is the least pre-fixpoint.
Proof • $f(l f p f) \subseteq l f p f$

- lfp f is the least pre-fixpoint of f

Lemma Let f be a monotone function on a partial order \leq. Then a least pre-fixpoint of f is also a least fixpoint.
Proof • $f p \leq p \Longrightarrow f p=p$

- p is the least fixpoint

Definition of L

$L(x::=a) \quad X=$
(if $x \in X$ then vars $a \cup(X-\{x\})$ else X)
L (WHILE b DO c) $X=l f p f_{w}$
where $f_{w}=(\lambda P$. vars $b \cup X \cup L c P)$
Lemma $L c$ is monotone.
Proof by induction on c using that $l f p$ is monotone: $l f p f \subseteq l f p g$ if for all $X, f X \subseteq g X$
Corollary f_{w} is monotone.

Computation of $l f p$

Theorem Let $f:: \tau$ set $\Rightarrow \tau$ set. If

- f is monotone: $X \subseteq Y \Longrightarrow f(X) \subseteq f(Y)$
- and the chain $\} \subseteq f(\}) \subseteq f(f(\})) \subseteq \ldots$ stabilizes after a finite number of steps, i.e. $f^{k+1}(\{ \})=f^{k}(\{ \})$ for some k, then $l f p(f)=f^{k}(\{ \})$.
Proof Show $f^{i}(\{ \}) \subseteq p$ for any $\operatorname{pfp} p$ of f (by induction on i).

Computation of lfp f_{w}

$f_{w}=(\lambda P$. vars $b \cup X \cup L c P)$
The chain $\left\} \subseteq f_{w}\{ \} \subseteq f_{w}^{2}\{ \} \subseteq \ldots\right.$ must stabilize:
Let vars c be the variables in c.
Lemma L c $X \subseteq$ vars $c \cup X$
Proof by induction on c
Let $V_{w}=$ vars $b \cup$ vars $c \cup X$
Corollary $P \subseteq V_{w} \Longrightarrow f_{w} P \subseteq V_{w}$
Hence $f_{w}^{k}\{ \}$ stabilizes for some $k \leq\left|V_{w}\right|$. More precisely: $k \leq \mid$ vars $c \mid+1$ because $f_{w}\{ \} \supseteq$ vars $b \cup X$.

Example

Let $w=$ WHILE b DO c
where $b=$ Less $(N 0)(V y)$
and $c=y::=V x ; x::=V z$
To compute $L w\{y\}$ we iterate $f_{w} P=\{y\} \cup L c P$:
$f_{w}\{ \}=\{y\} \cup L c\{ \}=\{y\}:$
\{\} $y::=V x\{ \} \quad x::=V z\{ \}$
$f_{w}\{y\}=\{y\} \cup L c\{y\}=\{x, y\}:$
$\{x\} \quad y::=V x\{y\} \quad x::=V z\{y\}$
$f_{w}\{x, y\}=\{y\} \cup L c\{x, y\}=\{x, y, z\}:$
$\{x, z\} \quad y::=V x\{y, z\} \quad x::=V z\{x, y\}$

Computation of lfp in Isabelle

From the library theory While_Combinator: while $::\left({ }^{\prime} a \Rightarrow\right.$ bool $) \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ while $b f s=($ if $b s$ then while $b f(f s)$ else $s)$

Lemma Let $f:: \tau$ set $\Rightarrow \tau$ set. If

- f is monotone: $X \subseteq Y \Longrightarrow f(X) \subseteq f(Y)$
- and bounded by some finite set C :

$$
X \subseteq C \Longrightarrow f X \subseteq C
$$

then lfp $f=$ while $(\lambda X . f X \neq X) f\}$

Limiting the number of iterations

Fix some small k (eg 2) and define $L b$ like L except
$L b w X= \begin{cases}g_{w}^{i}\{ \} & \text { if } g_{w}^{i+1}\{ \}=g_{w}^{i}\{ \} \text { for some } i<k \\ V_{w} & \text { otherwise }\end{cases}$
where $g_{w} P=$ vars $b \cup X \cup L b c P$
Theorem $L c X \subseteq L b c X$
Proof by induction on c. In the WHILE case:
If $L b w X=g_{w}^{i}\{ \}: \forall P . L$ c $P \subseteq L b$ c $P(\mathrm{IH}) \Longrightarrow$
$\forall P . f_{w} P \subseteq g_{w} P \Longrightarrow f_{w}\left(g_{w}^{i}\{ \}\right)=g_{w}\left(g_{w}^{i}\{ \}\right)=g_{w}^{i}\{ \}$
$\Longrightarrow L w X=l f p f_{w} \subseteq g_{w}^{i}\{ \}=L b w X$
If $L b w X=V_{w}: L w X \subseteq V_{w}$ (by Lemma)
(9) Live Variable Analysis

Correctness of L
Dead Variable Elimination
True Liveness
Comparisons

Comparison of analyses

- Definite initialization analysis is a forward must analysis:
- it analyses the executions starting from some point,
- variables must be assigned (on every program path) before they are used.
- Live variable analysis is a backward may analysis:
- it analyses the executions ending in some point,
- live variables may be used (on some program path) before they are assigned.

Comparison of DFA frameworks

Program representation:

- Traditionally (e.g. Aho/Sethi/Ullman), DFA is performed on control flow graphs (CFGs). Application: optimization of intermediate or low-level code.
- We analyse structured programs. Application: source-level program optimization.

Chapter 11

Denotational Semantics

(10) A Relational Denotational Semantics of IMP

(11) Continuity

What is it?

A denotational semantics maps syntax to semantics:

$$
D:: \text { syntax } \Rightarrow \text { meaning }
$$

Examples: aval $::$ aexp $\Rightarrow($ state \Rightarrow val $)$

$$
\text { Big_step }:: \text { com } \Rightarrow(\text { state } \times \text { state }) \text { set }
$$

D must be defined by primitive recursion over the syntax

$$
D\left(C t_{1} \ldots t_{n}\right)=\ldots\left(D t_{1}\right) \ldots\left(D t_{n}\right) \ldots
$$

Fake: Big_step $c=\{(s, t) .(c, s) \Rightarrow t\}$

Why?

More abstract: operational: How to execute it denotational: What does it mean

Simpler proof principles:
operational: relational, rule induction denotational: equational, structural induction

(10) A Relational Denotational Semantics of IMP

(11) Continuity

Relations

Id :: (' $a \times$ ' $a)$ set
$I d=\{p . \exists x . p=(x, x)\}$
$(O)::\left({ }^{\prime} a \times{ }^{\prime} b\right)$ set $\Rightarrow\left({ }^{\prime} b \times{ }^{\prime} c\right)$ set $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} c\right)$ set $r O s=\{(x, z) . \exists y .(x, y) \in r \wedge(y, z) \in s\}$

$D::$ com \Rightarrow com_den

type_synonym com_den $=($ state \times state $)$ set
D SKIP $=I d$
$D(x::=a)=\{(s, t) \cdot t=s(x:=$ aval $a s)\}$
$D\left(c_{1} ; c_{2}\right)=D c_{1} O D c_{2}$
$D\left(\right.$ IF b THEN $\left.c_{1} E L S E c_{2}\right)=$
$\left\{(s, t)\right.$. if bval $b s$ then $(s, t) \in D c_{1}$ else $\left.(s, t) \in D c_{2}\right\}$

Example

Let $c_{1}={ }^{\prime \prime} x^{\prime \prime}::=N 0$
$c_{2}={ }^{\prime \prime} y^{\prime \prime}::=V^{\prime \prime} x^{\prime \prime}$.
$D c_{1}=\left\{\left(s_{1}, s_{2}\right) \cdot s_{2}=s_{1}\left({ }^{\prime \prime} x^{\prime \prime}:=0\right)\right\}$
$D c_{2}=\left\{\left(s_{2}, s_{3}\right) . s_{3}=s_{2}\left({ }^{\prime \prime} y^{\prime \prime}:=s_{2}{ }^{\prime \prime} x^{\prime \prime}\right)\right\}$
$D\left(c_{1} ; ; c_{2}\right)=\left\{\left(s_{1}, s_{3}\right) . s_{3}=s_{1}\left({ }^{\prime \prime} x^{\prime \prime}:=0,{ }^{\prime \prime} y^{\prime \prime}:=0\right)\right\}$

$D($ WHILE b DO $c)=?$

Wanted:
D w =
$\{(s, t)$. if bval b s then $(s, t) \in D c O D w$ else $s=t\}$
Problem: not a denotational definition not allowed by Isabelle
But $D w$ should be a solution of the equation.
General principle:
x is a solution of $x=f(x) \longleftrightarrow x$ is a fixpoint of f
Define $D w$ as the least fixpoint of a suitable f

W

D $w=$
$\{(s, t)$. if bual b s then $(s, t) \in D c O D w$ else $s=t\}$
W ::
$($ state \Rightarrow bool $) \Rightarrow$ com_den $\Rightarrow($ com_den \Rightarrow com_den $)$
$W d b d c=$
$(\lambda d w .\{(s, t)$. if $d b s$ then $(s, t) \in d c O d w$ else $s=t\})$
Lemma $W d b d c$ is monotone.

We define
$D($ WHILE $b D O c)=l f p(W(b v a l b)(D c))$
By definition (where $f=W$ (bval b) $(D c)$):
$D w=l f p f=f(l f p f)=W($ bval $b)(D c)(D w)$
$=\{(s, t)$. if bval b s then $(s, t) \in D c O D w$ else $s=t\}$

Why least?

Formally: needed for equivalence proof with big-step. An intuitive example:

$$
w=W H I L E \text { Bc True DO SKIP }
$$

Then

$$
\begin{aligned}
& W(b v a l(\text { Bc True }))(D \text { SKIP }) \\
& =W(\lambda s . \text { True } I d \\
& =\lambda d w .\{(s, t) .(s, t) \in I d O d w\} \\
& =\lambda d w . d w
\end{aligned}
$$

Every relation is a fixpoint!
Only the least relation $\}$ makes computational sense.

A denotational equivalence proof

Example

$$
D w=D(\text { IF } b \text { THEN } c ; ; w \text { ELSE SKIP })
$$

where $w=$ WHILE b DO .
Let $f=W($ bval $b)(D c)$:
D w
$=\{(s, t)$. if bval b s then $(s, t) \in D c O D$ else $s=t\}$
$=D($ IF b THEN $c ;$; ELSE SKIP)

Equivalence of denotational and big-step semantics

Lemma $(c, s) \Rightarrow t \Longrightarrow(s, t) \in D c$ Proof by rule induction

Lemma $(s, t) \in D c \Longrightarrow(s, t) \in$ Big_step c Proof by induction on c

Corollary $(s, t) \in D c \longleftrightarrow(c, s) \Rightarrow t$

(10) A Relational Denotational Semantics of IMP

(11) Continuity

Chains and continuity

Definition

chain :: (nat \Rightarrow 'a set) \Rightarrow bool
chain $S=(\forall i . S i \subseteq S(S u c i))$
Definition (Continuous)
cont :: ('a set \Rightarrow 'b set) \Rightarrow bool
cont $f=\left(\forall S\right.$. chain $\left.S \longrightarrow f\left(\bigcup_{n} S n\right)=\left(\bigcup_{n} f(S n)\right)\right)$
Lemma cont $f \Longrightarrow$ mono f

Kleene fixpoint theorem

Theorem cont $f \Longrightarrow l f p f=\left(\bigcup_{n} f^{n}\{ \}\right)$

Application to semantics

Lemma $W d b d c$ is continuous.
Example
WHILE $\mathrm{x} \neq 0$ DO $\mathrm{x}:=\mathrm{x}-1$
Semantics: $\left\{(s, t) .0 \leq s^{\prime \prime} x^{\prime \prime} \wedge t=s\left({ }^{\prime \prime} x^{\prime \prime}:=0\right)\right\}$
Let $f=W d b d c$
where $\quad d b=b$ val $b=\left(\lambda s . s^{\prime \prime} x^{\prime \prime} \neq 0\right)$

$$
d c=D c=\left\{(s, t) \cdot t=s\left({ }^{\prime \prime} x^{\prime \prime}:=s^{\prime \prime} x^{\prime \prime}-1\right)\right\}
$$

A proof of determinism

single_valued $r=$
$(\forall x y z .(x, y) \in r \wedge(x, z) \in r \longrightarrow y=z)$
Lemma If $f::$ com_den \Rightarrow com_den is continuous and preserves single-valuedness then $l f p f$ is single-valued.

Lemma single_valued ($D c$)

Chapter 12

Hoare Logic

(12) Partial Correctness

(13) Verification Conditions

(14) Total Correctness

(12) Partial Correctness

(13) Verification Conditions

(14) Total Correctness
(12) Partial Correctness

Introduction
The Syntactic Approach The Semantic Approach Soundness and Completeness

We have proved functional programs correct (e.g. a compiler).

We have proved properties of imperative languages
(e.g. type safety).

But how do we prove properties of imperative programs?

An example program:
" $y^{\prime \prime}::=$ N $0 ;$; wsum
where
wsum \equiv
WHILE Less (N 0) ($V^{\prime \prime} x^{\prime \prime}$)
DO (" $y^{\prime \prime}::=$ Plus $\left(V^{\prime \prime} y^{\prime \prime}\right)\left(V^{\prime \prime} x^{\prime \prime}\right) ;$
" $\left.x^{\prime \prime}::=\operatorname{Plus}\left(V^{\prime \prime} x^{\prime \prime}\right)(N(-1))\right)$
At the end of the execution of " y " $::=N 0 ;$; wsum variable " y " should contain the sum $1+\ldots+i$ where i is the initial value of " x ".
sum $i=($ if $i \leq 0$ then 0 else $\operatorname{sum}(i-1)+i)$

A proof via operational semantics

Theorem:
(" ${ }^{\prime \prime}::=N 0 ;$; wsum, $\left.s\right) \Rightarrow t \Longrightarrow$
$t^{\prime \prime} y^{\prime \prime}=\operatorname{sum}\left(s^{\prime \prime} x^{\prime \prime}\right)$
Required Lemma:
(wsum, s) $\Rightarrow t \Longrightarrow$
$t^{\prime \prime} y^{\prime \prime}=s^{\prime \prime} y^{\prime \prime}+\operatorname{sum}\left(s^{\prime \prime} x^{\prime \prime}\right)$
Proved by rule induction.

Hoare Logic provides a structured approach for reasoning about properties of states during program execution:

- Rules of Hoare Logic (almost) syntax directed
- Automates reasoning about program execution
- No explicit induction

But no free lunch:

- Must prove implications between predicates on states
- Needs invariants.
(12) Partial Correctness

Introduction
The Syntactic Approach
The Semantic Approach
Soundness and Completeness

This is the standard approach.
Formulas are syntactic objects.
Everything is very concrete and simple.
But complex to formalize.
Hence we soon move to a semantic view of formulas.
Reason for introduction of syntactic approach: didactic
For now, we work with a (syntactically) simplified version of IMP.

Hoare Logic reasons about Hoare triples $\{P\} c\{Q\}$ where

- P and Q are syntactic formulas involving program variables
- P is the precondition, Q is the postcondition
- $\{P\} c\{Q\}$ means that if P is true at the start of the execution, then Q is true at the end of the execution
- if the execution terminates! (partial correctness)

Informal example:

$$
\{x=41\} x:=x+1\{x=42\}
$$

Terminology: P and Q are called assertions.

Examples

$$
\begin{array}{rll}
\{x=5\} & ? & \{x=10\} \\
\{\text { True }\} & ? & \{x=10\} \\
\{x=y\} & ? & \{x \neq y\}
\end{array}
$$

Boundary cases:

$$
\begin{array}{lll}
\{\text { True }\} & ? & \{\text { True }\} \\
\{\text { True }\} & ? & \{\text { False }\} \\
\{\text { False }\} & ? & \{Q\}
\end{array}
$$

The rules of Hoare Logic

$$
\begin{gathered}
\{P\} \text { SKIP }\{P\} \\
\{Q[a / x]\} x:=a\{Q\}
\end{gathered}
$$

Notation: $Q[a / x]$ means " Q with a substituted for x ".
$\begin{array}{llll}\text { Examples: } & \{ & \} x:=5 & \{x=5\} \\ & \{ & \} x:=x+5 & \{x=5\} \\ & \{ & \} x:=2 *(x+5) & \{x>20\}\end{array}$
Alternative explanation of assignment rule:

$$
\{Q[a]\} x:=a\{Q[x]\}
$$

The assignment axiom allows us to compute the precondition from the postcondition.

There is a version to compute the postcondition from the precondition, but it is more complicated. (Exercise!)

More rules of Hoare Logic

$$
\begin{gathered}
\frac{\left\{P_{1}\right\} c_{1}\left\{P_{2}\right\} \quad\left\{P_{2}\right\} c_{2}\left\{P_{3}\right\}}{\left\{P_{1}\right\} c_{1} ; c_{2}\left\{P_{3}\right\}} \\
\frac{\{P \wedge b\} c_{1}\{Q\} \quad\{P \wedge \neg b\} c_{2}\{Q\}}{\{P\} I F b T H E N c_{1} E L S E c_{2}\{Q\}} \\
\frac{\{P \wedge b\} c\{P\}}{\{P\} \text { WHILE } D O c\{P \wedge \neg b\}}
\end{gathered}
$$

In the While-rule, P is called an invariant because it is preserved across executions of the loop body.

The consequence rule

So far, the rules were syntax-directed. Now we add

Preconditions can be strengthened, postconditions can be weakened.

Two derived rules

Problem with assignment and While-rule: special form of pre and postcondition.
Better: combine with consequence rule.

$$
\begin{gathered}
\frac{P \longrightarrow Q[a / x]}{\{P\} x:=a\{Q\}} \\
\frac{\{P \wedge b\} c\{P\} \quad P \wedge \neg b \longrightarrow Q}{\{P\} W H I L E b D O c\{Q\}}
\end{gathered}
$$

Example

$$
\begin{aligned}
& \{x=i\} \\
& y:=0 \\
& \text { WHILE } 0<x D O(y:=y+x ; x:=x-1) \\
& \{y=\operatorname{sum} i\}
\end{aligned}
$$

$$
\text { wsum }=\text { WHILE } x>0 \text { DO }(y:=y+x ; x:=x-1)
$$

$$
I=y=\operatorname{sum} i-\operatorname{sum} x
$$

$$
\begin{aligned}
& \left.\frac{x=i \breve{\hookrightarrow} I[0 / y]}{\{x=i\} y:=0\{I\}} \frac{I \wedge x>0 \xrightarrow{\checkmark} I[x-1 / x][y+x / y]}{\frac{\frac{1}{\{I \wedge x>0\} y:=y+x\{I[x-1 / x]\} x:=x-1\{I\}}}{\{I \wedge x>0\} y:=y+x ; x:=x-1\{I\}}} I \wedge x \leq 0 \stackrel{\checkmark}{\rightarrow} y=\operatorname{sum} i\right) \\
& \{x=i\} y:=0 ; \operatorname{wsum}\{y=\text { sum } i\}
\end{aligned}
$$

Example proof exhibits key properties of Hoare logic:

- Choice of rules is syntax-directed and hence automatic.
- Proof of ";" proceeds from right to left.
- Proofs require only invariants and arithmetic reasoning.
(12) Partial Correctness

Introduction
The Syntactic Approach
The Semantic Approach
Soundness and Completeness

Assertions are predicates on states

$$
\text { assn }=\text { state } \Rightarrow \text { bool }
$$

Alternative view: sets of states
Semantic approach simplifies meta-theory, our main objective.

Validity

$$
\begin{gathered}
\vDash\{P\} c\{Q\} \\
\longleftrightarrow \\
\forall s t . P s \wedge(c, s) \Rightarrow t \longrightarrow Q t \\
\text { " }\{P\} c\{Q\} \text { is valid" }
\end{gathered}
$$

In contrast:

$$
\vdash\{P\} c\{Q\}
$$

" $\{P\} c\{Q\}$ is provable/derivable"

Provability

$$
\begin{gathered}
\vdash\{P\} \operatorname{SKIP}\{P\} \\
\vdash\{\lambda s . Q(s[a / x])\} x::=a\{Q\} \\
\text { where } s[a / x] \equiv s(x:=\text { avail a } s)
\end{gathered}
$$

Example: $\{x+5=5\} x:=x+5\{x=5\}$ in semantic terms:

$$
\vdash\{P\} x::=\text { Plus }(V x)(N 5)\{\lambda t . t x=5\}
$$

where $P=(\lambda s .(\lambda t$. $t x=5)(s[$ Plus $(V x)(N 5) / x]))$

$$
\begin{aligned}
& =(\lambda s .(\lambda t . t x=5)(s(x:=s x+5))) \\
& =(\lambda s . s x+5=5)
\end{aligned}
$$

$$
\begin{gathered}
\frac{\vdash\{P\} c_{1}\{Q\} \quad \vdash\{Q\} c_{2}\{R\}}{\vdash\{P\} c_{1} ; ; c_{2}\{R\}} \\
\stackrel{\vdash\{\lambda s . P s \wedge \text { bval } b s\} c_{1}\{Q\}}{\vdash\{\lambda s . P s \wedge \neg \text { bval } b s\} c_{2}\{Q\}} \\
\vdash\{P\} I F b \text { THEN } c_{1} E L S E c_{2}\{Q\} \\
\\
\qquad\{P\} W H I L E b D O c\{\lambda s . P s \wedge \neg b v a l b s\}
\end{gathered}
$$

$$
\begin{aligned}
& \forall s . P^{\prime} s \longrightarrow P s \\
& \vdash\{P\} c\{Q\} \\
& \forall s . Q s \longrightarrow Q^{\prime} s \\
& \qquad\left\{P^{\prime}\right\} c\left\{Q^{\prime}\right\}
\end{aligned}
$$

Hoare_Examples.thy

(12) Partial Correctness

Introduction
The Syntactic Approach The Semantic Approach
Soundness and Completeness

Soundness

Everything that is provable is valid:

$$
\vdash\{P\} c\{Q\} \Longrightarrow \vDash\{P\} c\{Q\}
$$

Proof by induction, with a nested induction in the While-case.

Towards completeness: $\models \Longrightarrow \vdash$

Weakest preconditions

The weakest precondition of command c w.r.t. postcondition Q :

$$
w p \text { c } Q=(\lambda s . \forall t .(c, s) \Rightarrow t \longrightarrow Q t)
$$

The set of states that lead (via c) into Q.
A foundational semantic notion, not merely for the completeness proof.

Nice and easy properties of $w p$

wp SKIP $Q=Q$
wp $(x::=a) Q=(\lambda s . Q(s[a / x]))$
wp $\left(c_{1} ; c_{2}\right) Q=w p c_{1}\left(w p c_{2} Q\right)$
wp (IF b THEN $c_{1} E L S E c_{2}$) $Q=$
(λ s. if bual $b s$ then $w p c_{1} Q s$ else wp $c_{2} Q s$)
\neg bval $b s \Longrightarrow w p($ WHILE b DO $c) Q s=Q s$
bval b $s \Longrightarrow$
wp (WHILE b DO c) $Q s=$
wp (c; WHILE b DO c) $Q s$

Completeness

$$
\models\{P\} c\{Q\} \Longrightarrow \vdash\{P\} c\{Q\}
$$

Proof idea: do not prove $\vdash\{P\} c\{Q\}$ directly, prove something stronger:

Lemma $\vdash\{w p c \quad Q\} c\{Q\}$
Now prove $\vdash\{P\} c\{Q\}$ from $\vdash\{w p c Q\} c\{Q\}$ by the consequence rule because
Fact $\models\{P\} c\{Q\} \longleftrightarrow(\forall s . P s \longrightarrow w p c Q s)$ Follows directly from defs of \models and $w p$.

Completeness

Lemma $\vdash\{$ wp $c Q\} c\{Q\}$ Proof by induction on c, for arbitary Q. Case WHILE:

$$
\vdash\{P\} c\{Q\} \longleftrightarrow \vDash\{P\} c\{Q\}
$$

Proving program properties by Hoare logic (\vdash) is just as powerful as by operational semantics (\models).

WARNING

Most texts that discuss completeness of Hoare logic state or prove that Hoare logic is only "relatively complete" but not complete.
Reason: the standard notion of completeness assumes some abstract mathematical notion of \models.
Our notion of \models is defined within the same (limited) proof system (for HOL) as \vdash.

(12) Partial Correctness

(13) Verification Conditions

(14) Total Correctness

Idea:
Reduce provability in Hoare logic to provability in the assertion language:
automate the Hoare logic part of the problem.
More precisely:
From $\{P\} c\{Q\}$ generate an assertion A, the verification condition, such that $\quad \vdash\{P\} c\{Q\}$ iff A is provable.

Method:
Simulate syntax-directed application of Hoare logic rules. Collect all assertion language side conditions.

A problem: loop invariants

Where do they come from?
A trivial solution:
Let the user provide them!
How?
Each loop must be annotated with its invariant!

How to synthesize loop invariants automatically is an important research problem.

Which we ignore for the moment.
But come back to later.

Terminology:

VCG $=$ Verification Condition Generator

All successful verification technology for imperative programs relies on

- VCGs (of one kind or another)
- and powerful (semi-)automatic theorem provers.

The (approx.) plan of attack

(1) Introduce annotated commands with loop invariants
(2) Define functions for computing

- weakest preconditions: pre :: com \Rightarrow assn \Rightarrow assn
- verification conditions: vc :: com \Rightarrow assn \Rightarrow bool
(3) Soundness: vc c $Q \Longrightarrow \vdash\{$? $\} c\{Q\}$
(4) Completeness: if $\vdash\{P\} c\{Q\}$ then c can be annotated (becoming C) such that vc $C Q$.
The details are a bit different ...

Annotated commands

Like commands, except for While:
datatype acom $=$ Askip
| Aassign vname aexp
| Aseq acom acom
| Aif bexp acom acom
Awhile assn bexp acom
Concrete syntax: like commands, except for WHILE:

$$
\{I\} \text { WHILE b DO c }
$$

Weakest precondition

pre $::$ acom \Rightarrow assn \Rightarrow assn
pre SKIP $Q=Q$
$\operatorname{pre}(x::=a) Q=(\lambda s . Q(s[a / x]))$
$\operatorname{pre}\left(C_{1} ; ; C_{2}\right) Q=\operatorname{pre} C_{1}\left(\right.$ pre $\left.C_{2} Q\right)$
pre (IF b THEN C_{1} ELSE C $\left.C_{2}\right) Q=$
$\left(\lambda s\right.$. if bval b s then pre $C_{1} Q s$ else pre $\left.C_{2} Q s\right)$
pre $(\{I\}$ WHILE b DO C) $Q=I$

Warning

In the presence of loops, pre C may not be the weakest precondition but may be anything!

Verification condition

$v c::$ acom \Rightarrow assn \Rightarrow bool
vc $S K I P Q=$ True
vc $(x::=a) Q=$ True
$v c\left(C_{1} ; ; C_{2}\right) Q=\left(v c C_{1}\left(\right.\right.$ pre $\left.\left.C_{2} Q\right) \wedge v c C_{2} Q\right)$
$v c\left(I F ~ b ~ T H E N ~ C_{1} E L S E C_{2}\right) ~ Q=$
$\left(v c C_{1} Q \wedge v c C_{2} Q\right)$
vc $(\{I\}$ WHILE b DO C) $Q=$
$((\forall s .(I s \wedge$ bval $b s \longrightarrow$ pre $C I s) \wedge$ $(I s \wedge \neg$ bval $b s \longrightarrow Q s)) \wedge$
vc $C I)$

Verification conditions only arise from loops:

- the invariant must be invariant
- and it must imply the postcondition.

Everything else in the definition of $v c$ is just bureaucracy: collecting assertions and passing them around.

Hoare triples operate on com, functions pre and $v c$ operate on acom.
Therefore we define
strip $::$ acom \Rightarrow com
strip $S K I P=S K I P$
$\operatorname{strip}(x::=a)=x::=a$
strip $\left(C_{1} ; ; C_{2}\right)=\operatorname{strip} C_{1} ; ;$ strip C_{2}
$\operatorname{strip}\left(\right.$ IF b THEN $\left.C_{1} E L S E C_{2}\right)=$
IF b THEN strip C_{1} ELSE strip C_{2}
strip $(\{I\}$ WHILE b DO C) $=W H I L E b D O$ strip C

Soundness of $v c \&$ pre w.r.t. \vdash vc $C Q \Longrightarrow \vdash\{$ pre $C Q\}$ strip $C\{Q\}$

Proof by induction on C, for arbitrary Q.
Corollary:
$\llbracket v c C Q ; \forall s . P s \longrightarrow$ pre $C Q s \rrbracket$ $\Longrightarrow \vdash\{P\}$ strip $C\{Q\}$

How to prove some $\vdash\{P\} \subset\{Q\}$:

- Annotate c yielding C, i.e. strip $C=c$.
- Prove Hoare-free premise of corollary. But is premise provable if $\vdash\{P\} c\{Q\}$ is?
$\llbracket v c C$ C $; \forall$ s. P s \longrightarrow pre $C Q s \rrbracket$
$\Longrightarrow \vdash\{P\}$ strip $C\{Q\}$

Why could premise not be provable although conclusion is?

- Some annotation in C is not invariant.
- vc or pre are wrong
(e.g. accidentally always produce False).

Therefore we prove completeness:
suitable annotations exist such that premise is provable.

Completeness of $v c \&$ pre w.r.t. \vdash

$\vdash\{P\} c\{Q\} \Longrightarrow$
$\exists C$. strip $C=c \wedge v c C Q \wedge(\forall s . P s \longrightarrow$ pre $C Q s)$
Proof by rule induction.
Needs two monotonicity lemmas:
$\llbracket \forall s . P s \longrightarrow P^{\prime} s$; pre C P $s \rrbracket \Longrightarrow$ pre C $P^{\prime} s$
$\llbracket \forall s . P s \longrightarrow P^{\prime} s ; v c C P \rrbracket \Longrightarrow v c C P^{\prime}$

(12) Partial Correctness

(13) Verification Conditions

(14) Total Correctness

- Partial Correctness:
if command terminates, postcondition holds
- Total Correctness:
command terminates and postcondition holds
Total Correctness $=$ Partial Correctness + Termination
Formally:
$\left(\models_{t}\{P\} c\{Q\}\right)=$
$(\forall s . P s \longrightarrow(\exists t .(c, s) \Rightarrow t \wedge Q t))$
Assumes that semantics is deterministic!
Exercise: Reformulate for nondeterministic language

\vdash_{t} : A proof system for total correctness

Only need to change the WHILE rule.

> Some measure function state \Rightarrow nat must decrease with every loop iteration
$\frac{\bigwedge n . \vdash_{t}\{\lambda s . P s \wedge \text { bval } b s \wedge n=f s\} c\{\lambda s . P s \wedge f s<n\}}{\vdash_{t}\{P\} \text { WHILE bDO } c\{\lambda s . P s \wedge \neg \text { bval } b s\}}$

WHILE rule can be generalized from a function to a relation:

$\frac{\bigwedge n . \vdash_{t}\{\lambda s . P s \wedge \text { bval } b s \wedge T s n\} c\left\{\lambda s . P s \wedge\left(\exists n^{\prime}<n . T s n^{\prime}\right)\right\}}{\left.\vdash_{t}\{\lambda s . P s \wedge(\exists n . T s n)\} \text { WHILE bDOc\{ } \cos P s \wedge \neg \text { bval } b s\right\}}$

Hoare_Total.thy

Example

Soundness

$$
\vdash_{t}\{P\} c\{Q\} \Longrightarrow \models_{t}\{P\} c\{Q\}
$$

Proof by induction, with a nested induction on n in the While-case.

Completeness

$$
\vdash_{t}\{P\} \subset\{Q\} \Longrightarrow \vdash_{t}\{P\} \subset\{Q\}
$$

Follows easily from

$$
\vdash_{t}\left\{w p_{t} c Q\right\} c\{Q\}
$$

where

$$
w p_{t} c Q=(\lambda s . \exists t .(c, s) \Rightarrow t \wedge Q t) .
$$

Proof of $\vdash_{t}\left\{w p_{t} c \quad Q\right\} c\{Q\}$ is by induction on c. In the WHILE b DO c case, use the WHILE rule with
$\frac{\neg \text { bval } b s}{T s 0} \quad \frac{\text { bval } b s \quad(c, s) \Rightarrow s^{\prime} \quad T s^{\prime} n}{T s(n+1)}$
T s n means that WHILE b DO c started in state s needs n iterations to terminate.

Chapter 13

Abstract Interpretation

(15) Introduction
(10) Annotated Commands
(17) Collecting Semantics

18 Abstract Interpretation: Orderings
(19) A Generic Abstract Interpreter

20 Executable Abstract State
21 Termination
122 Analysis of Boolean Expressions
23 Interval Analysis
(44) Widening and Narrowing

(15) Introduction

(10) Annotated Commands
(17) Collecting Semantics
(18) Abstract Interpretation: Orderings
(19) A Generic Abstract Interpreter
(20) Executable Abstract State

21 Termination
22 Analysis of Boolean Expressions
23) Interval Analysis

D4 Widening and Narrowing

- Abstract interpretation is a generic approach to static program analysis.
- It subsumes and improves our earlier approaches.
- Aim:

For each program point, compute the possible values of all variables

- Method:

Execute/interpret program with abstract instead of concrete values, eg intervals instead of numbers.

Applications: Optimization

- Constant folding
- Unreachable and dead code elimination
- Array access optimization:

$$
\begin{aligned}
& \mathrm{a}[\mathrm{i}]:=1 ; \mathrm{a}[\mathrm{j}]:=2 ; \mathrm{x}:=\mathrm{a}[\mathrm{i}] \sim \\
& \mathrm{a}[\mathrm{i}]:=1 ; \mathrm{a}[\mathrm{j}]:=2 ; \mathrm{x}:=1 \\
& \text { if } i \neq j
\end{aligned}
$$

Applications:

Debugging/Verification

Detect presence or absence of certain runtime exceptions/errors:

- Interval analysis: $i \in[m, n]$:
- No division by 0 in e/i if $0 \notin[m, n]$
- No ArrayIndexOutOfBoundsException in a[i]

$$
\text { if } 0 \leq m \wedge n<\text { a.length }
$$

- Null pointer analysis

Precision

A consequence of Rice's theorem:
In general, the possible values of a variable cannot be computed precisely.
Program analyses overapproximate: they compute a superset of the possible values of a variable.
If an analysis says that some value

- cannot arise, this is definitely the case.
- can arise, this is only potentially the case. Beware of false alarms because of overapproximation.

Annotated commands

Like in Hoare logic, we annotate

$$
\{\ldots\}
$$

program text with semantic information.
Not just loops but also all intermediate program points, for example:

$$
\mathrm{x}:=0\{\ldots\} ; \mathrm{y}:=0\{\ldots\}
$$

Annotated WHILE

View

$$
\begin{aligned}
& \{\operatorname{Inv}\} \\
& \text { WHILE } b \text { DO }\{P\} c \\
& \{Q\}
\end{aligned}
$$

as a control flow graph with annotated nodes:

The starting point: Collecting Semantics

Collects all possible states for each program point:
$\mathrm{x}:=0\{\langle x:=0\rangle\}$;
$\{<x:=0>,<x:=2>,<x:=4>\}$
WHILE $\mathrm{x}<3$
DO $\{<x:=0\rangle,<x:=2>\}$
$\mathrm{x}:=\mathrm{x}+2\{\langle x:=2>,<x:=4>\}$
$\{\langle x:=4\rangle\}$

Infinite sets of states:

$\{\ldots,<x:=-1>,<x:=0>,\langle x:=1>, \ldots\}$ WHILE $\mathrm{x}<3$
DO $\{\ldots,<x:=1>,<x:=2>\}$
$\mathrm{x}:=\mathrm{x}+2\{\ldots,<x:=3>,<x:=4>\}$
$\{\langle x:=3\rangle,\langle x:=4\rangle, \ldots\}$

Multiple variables:

$\mathrm{x}:=0 ; \mathrm{y}:=0\{<x:=0, y:=0>\}$;
$\{<x:=0, y:=0>,<x:=2, y:=1>,<x:=4, y:=2>\}$
WHILE x < 3
DO $\{<x:=0, y:=0>,<x:=2, y:=1>\}$
$\mathrm{x}:=\mathrm{x}+2 ; \mathrm{y}:=\mathrm{y}+1$
$\{<x:=2, y:=1>,<x:=4, y:=2>\}$
$\{<x:=4, y:=2>\}$

A first approximation

(vname \Rightarrow val) set \sim vname \Rightarrow val set

$\mathrm{x}:=0\{\langle x:=\{0\}\rangle\}$;
$\{<x:=\{0,2,4\}>\}$
WHILE x < 3
DO $\{<x:=\{0,2\}>\}$
$\mathrm{x}:=\mathrm{x}+2\{<x:=\{2,4\}>\}$
$\{<x:=\{4\}>\}$

Loses relationships between variables but simplifies matters a lot.

Example:

$\{<x:=0, y:=0>,<x:=1, y:=1>\}$
is approximated by
$<x:=\{0,1\}, y:=\{0,1\}>$
which also subsumes
$<x:=0, y:=1>$ and $<x:=1, y:=0>$.

Abstract Interpretation

Approximate sets of concrete values by abstract values
Example: approximate sets of numbers by intervals
Execute/interpret program with abstract values

Example

Consistently annotated program:
$\mathrm{x}:=0\{<x:=[0,0]>\}$;
$\{<x:=[0,4]>\}$
WHILE $\mathrm{x}<3$
DO $\{\langle x:=[0,2]\rangle\}$
$\mathrm{x}:=\mathrm{x}+2\{<x:=[2,4]>\}$
$\{\langle x:=[3,4]>\}$
The annotations are computed by

- starting from an un-annotated program and
- iterating abstract execution
- until the annotations stabilize.

$$
x:=0
$$

WHILE x < 3
DO

$$
x:=x+2
$$

(15) Introduction

(16) Annotated Commands
(1) Collecting Semantics

18 Abstract Interpretation: Orderings
(10) A Generic Abstract Interpreter
(20) Executable Abstract State
21) Termination

22 Analysis of Boolean Expressions
23) Interval Analysis

๑A Midening and Narrowing

Concrete syntax

$$
\begin{aligned}
& \text { 'a acom }::=\operatorname{SKIP}\left\{{ }^{\prime} a\right\} \mid \text { string }::=\operatorname{aexp}\{\text { ' } a\} \\
& \text { | 'a acom ; ' 'a acom } \\
& \text { IF bexp THEN \{ ' } a\} \text { ' } a \text { acom } \\
& \text { ELSE }\{\text { ' } a\} \text { 'a acom } \\
& \{' a\} \\
& \text { \{'a\} } \\
& \text { WHILE bexp DO \{'a\} 'a acom } \\
& \{' a\}
\end{aligned}
$$

'a: type of annotations
Example: " $x^{\prime \prime}::=N 1\{9\} ; ; \operatorname{SKIP}\{6\}$:: nat acom

Abstract syntax

datatype

'a acom =

SKIP 'a
| Assign string aexp 'a
| Seq ('a acom) ('a acom)
| If bexp 'a ('a acom) 'a ('a acom) 'a
| While 'a bexp 'a ('a acom) 'a

Auxiliary functions: strip

Strips all annotations from an annotated command
strip :: 'a acom \Rightarrow com
strip $(S K I P\{P\})=S K I P$
$\operatorname{strip}(x::=e\{P\})=x::=e$
strip $\left(C_{1} ; ; C_{2}\right)=\operatorname{strip} C_{1} ; ;$ strip C_{2}
strip (IF b THEN $\left\{P_{1}\right\} C_{1} \operatorname{ELSE}\left\{P_{2}\right\} C_{2}\{P\}$) $=I F b$ THEN strip C_{1} ELSE strip C_{2}
strip $(\{I\}$ WHILE b DO $\{P\} C\{Q\}$)
$=$ WHILE b DO strip C
We call C and C^{\prime} strip-equal iff strip $C=\operatorname{strip} C^{\prime}$.

Auxiliary functions: annos

The list of annotations in an annotated command (from left to right)
annos :: 'a acom $\Rightarrow{ }^{\prime}$ a list annos $(S K I P\{P\})=[P]$ $\operatorname{annos}(x::=e\{P\})=[P]$
annos $\left(C_{1} ; C_{2}\right)=$ annos $C_{1} @ \operatorname{annos} C_{2}$ annos (IF b THEN $\left.\left\{P_{1}\right\} C_{1} \operatorname{ELSE}\left\{P_{2}\right\} C_{2}\{Q\}\right)=$ $P_{1} \#$ annos $C_{1} @ P_{2} \#$ annos $C_{2} @[Q]$ annos $(\{I\}$ WHILE b DO $\{P\} C\{Q\})=$ $I \# P$ \# annos C @ $[Q]$

Auxiliary functions: anno

$$
\begin{aligned}
& \text { anno }:: ' a \text { acom } \Rightarrow \text { nat } \Rightarrow \text { 'a } \\
& \text { anno } C p=\text { annos } C!p
\end{aligned}
$$

The p-th annotation (starting from 0)

Auxiliary functions: post

post $::$ 'a acom \Rightarrow ' a
post $C=$ last (annos C)
The rightmost/last/post annotation

Auxiliary functions: map_acom

map_acom $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a$ acom $\Rightarrow{ }^{\prime} b$ acom
map_acom $f C$ applies f to all annotations in C
(15) Introduction
(10) Annotated Commands
(17) Collecting Semantics

18 Abstract Interpretation: Orderings
(19) A Generic Abstract Interpreter

ம © Executable Abstract State
(1) Termination

22 Analysis of Boolean Expressions
(23) Interval Analysis
(4) Widening and Narrowing

Annotate commands with the set of states

 that can occur at each annotation point.The annotations are generated iteratively:
step $::$ state set \Rightarrow state set acom \Rightarrow state set acom
Each step executes all atomic commands simultaneously, propagating the annotations one step further.
start states
flowing into the command

step

step $S(S K I P\{-\})=$ SKIP $\{S\}$
step $S(x::=e\{-\})=$
$x::=e\{\{s(x:=$ aval e s) $\mid s . s \in S\}\}$
step $S\left(C_{1} ; C_{2}\right)=$ step $S C_{1} ;$ step $\left(\right.$ post $\left.C_{1}\right) C_{2}$
step $S\left(\operatorname{IF} b \operatorname{THEN}\left\{P_{1}\right\} C_{1} \operatorname{ELSE}\left\{P_{2}\right\} C_{2}\{-\}\right)=$
IF b THEN $\left\{\left\{s \in S\right.\right.$. bval b s\}\} step $P_{1} C_{1}$
ELSE $\{\{s \in S$. \neg bual $b s\}\}$ step $P_{2} C_{2}$
$\left\{\right.$ post $C_{1} \cup$ post $\left.C_{2}\right\}$

step

step $S(\{I\}$ WHILE b DO $\{P\} C\{-\})=$ $\{S \cup$ post $C\}$
WHILE b
$D O\{\{s \in I$. bval $b s\}\}$
step PC
$\{\{s \in I . \neg$ oval $b s\}\}$

Collecting semantics

View command as a control flow graph

- where you constantly feed in some fixed input set S (typically all possible states)
- and pump/propagate it around the graph
- until the annotations stabilize this may happen in the limit only!
Stabilization means fixpoint:

$$
\text { step } S C=C
$$

Collecting_Examples.thy

Abstract example

Let $C=\{I\}$
WHILE b
DO $\{P\} C_{0}$
\{ Q \}
step $S C=C$ means

$$
\begin{aligned}
& I=S \cup \text { post } C_{0} \\
& P=\{s \in I . \text { bval } b s\} \\
& C_{0}=\text { step } P C_{0} \\
& Q
\end{aligned}=\{s \in I . \neg \text { bval } b s\}, ~ l
$$

Fixpoint $=$ solution of equation system Iteration is just one way of solving equations

Why least fixpoint?

$$
\begin{aligned}
& \{I\} \\
& \text { WHILE true } \\
& \text { DO }\{I\} \operatorname{SKIP}\{I\} \\
& \{\}\}
\end{aligned}
$$

Is fixpoint of step $\}$ for every I
But the "reachable" fixpoint is $I=\{ \}$

Does step always have a least fixpoint?

Partial order

A type ' a is a partial order if

- there is a predicate $\leq::{ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow$ bool
- that is reflexive $(x \leq x)$,
- transitive $(\llbracket x \leq y ; y \leq z \rrbracket \Longrightarrow x \leq z)$ and
- antisymmetric $(\llbracket x \leq y ; y \leq x \rrbracket \Longrightarrow x=y)$

Complete lattice

Definition

A partial order ' a is a complete lattice
if every set $S::$ ' a set has a greatest lower bound $l::$ ' a :

- $\forall s \in S . l \leq s$
- If $\forall s \in S$. $l^{\prime} \leq s$ then $l^{\prime} \leq l$

The greatest lower bound (infimum) of S is often denoted by ΠS.

Fact Type 'a set is a complete lattice where $\leq=\subseteq$ and $\Pi=\bigcap$

Lemma In a complete lattice, every set S of elements also has a least upper bound (supremum) $\bigsqcup S$:

- $\forall s \in S . s \leq \bigsqcup S$
- If $\forall s \in S . s \leq u$ then $\bigsqcup S \leq u$

The least upper bound is the greatest lower bound of all upper bounds: $\bigsqcup S=\Pi\{u . \forall s \in S . s \leq u\}$.

Thus complete lattices can be defined via the existence of all infima or all suprema or both.

Existence of least fixpoints

Definition A function f on a partial order \leq is monotone if $x \leq y \Longrightarrow f x \leq f y$.

Theorem (Knaster-Tarski) Every monotone function on a complete lattice has the least (pre-)fixpoint

$$
\Pi\{p . f p \leq p\}
$$

Proof just like the version for sets.

Ordering 'a acom

An ordering on ' a can be lifted to ' a acom by comparing the annotations of strip-equal commands:
$C_{1} \leq C_{2} \longleftrightarrow$
strip $C_{1}=\operatorname{strip} C_{2} \wedge$
(\forall p<length (annos C_{1}). anno $C_{1} p \leq$ anno $C_{2} p$)
Lemma If ' a is a partial order, so is ' a acom.

Ordering 'a acom

Example:

$$
\begin{array}{lll}
x::=N 0\{\{a\}\} \leq x::=N 0\{\{a, b\}\} & \longleftrightarrow & \text { True } \\
x::=N 0\{\{a\}\} \leq x::=N 0\{\{ \}\} & \longleftrightarrow & \text { False } \\
x::=N 0\{S\} \leq x::=N 1\{S\} & \longleftrightarrow \text { False }
\end{array}
$$

The collecting semantics needs to order state set acom.
Annotations are (state) sets ordered by \subseteq, which form a complete lattice.

Does state set acom also form a complete lattice?
Almost . . .

A complication

What is the infimum of $\operatorname{SKIP}\{S\}$ and $\operatorname{SKIP}\{T\}$?

$$
S K I P\{S \cap T\}
$$

What is the infimum of $S K I P\{S\}$ and $x::=N 0\{T\} ?$
Only strip-equal commands have an infimum

It turns out:

- if ' a is a complete lattice,
- then for each $c::$ com
- the set $\{C::$ ' a acom. strip $C=c\}$ is also a complete lattice
- but the whole type 'a acom is not.

Therefore we make the carrier set explicit.

Complete lattice as a set

Definition Let ' a be a partially ordered type.
A set $L::$ ' a set is a complete lattice
if every $M \subseteq L$ has a greatest lower bound $\Pi M \in L$.
Given sets A and B and a function f,
$f \in A \rightarrow B$ means $\forall a \in A$. fa a.
Theorem (Knaster-Tarski)
Let $L::$ 'a set be a complete lattice and $f \in L \rightarrow L$ a monotone function.
Then f (restricted to L) has the least fixpoint

$$
l f p f=\sqcap\{p \in L . f p \leq p\} .
$$

Application to acom

Let ' a be a complete lattice and $c::$ com.
Then $L=\left\{C::{ }^{\prime} a\right.$ acom. strip $\left.C=c\right\}$
is a complete lattice.
The infimum of a set $M \subseteq L$ is computed "pointwise":
Annotate c at annotation point p with the infimum of the annotations of all $C \in M$ at p.
Example $\Pi\{\operatorname{SKIP}\{A\}, S K I P\{B\}, \ldots\}$
$=S K I P\left\{\prod\{A, B, \ldots\}\right\}$
Formally ...

Auxiliary function: annotate

annotate $::\left(\right.$ nat $\left.\Rightarrow{ }^{\prime} a\right) \Rightarrow$ com $\Rightarrow{ }^{\prime} a$ acom
Set annotation number p (as counted by anno) to $f p$. Definition is technical. The characteristic lemma:
anno (annotate f c) $p=f p$

Lemma Let ' a be a complete lattice and $c::$ com.
Then $L=\{C::$ ' a acom. strip $C=c\}$
is a complete lattice where the infimum of $M \subseteq L$ is
annotate $(\lambda p . \Pi\{$ anno $C p \mid C . C \in M\}) c$
Proof straightforward (pointwise).

The Collecting Semantics

The underlying complete lattice is now state set.
Therefore $L=\{C::$ state set acom. strip $C=c\}$ is a complete lattice for any c.

Lemma step $S \in L \rightarrow L$ and is monotone.
Therefore Knaster-Tarski is applicable and we define

$$
\begin{aligned}
& C S:: \text { com } \Rightarrow \text { state set acom } \\
& C S c=l f p \text { (step UNIV) }
\end{aligned}
$$

[lfp is defined in the context of some lattice L.
Our concrete L depends on c.
Therefore $l f p$ depends on c, too.]

Relationship to big-step semantics

For simplicity: compare only pre and post-states
Theorem $\quad(c, s) \Rightarrow t \Longrightarrow t \in \operatorname{post}(C S c)$
Follows directly from

$$
\llbracket(c, s) \Rightarrow t ; s \in S \rrbracket \Longrightarrow t \in \operatorname{post}(\text { lfp } c(\text { step } S))
$$

Proof of

$$
\llbracket(c, s) \Rightarrow t ; s \in S \rrbracket \Longrightarrow t \in \operatorname{post}(l f p c(\text { step } S))
$$

uses
$\operatorname{post}(l f p c f)=\bigcap\{$ post $C \mid C . \operatorname{strip} C=c \wedge f C \leq C\}$
and
$\llbracket(c, s) \Rightarrow t ;$ strip $C=c ; s \in S ;$ step $S C \leq C \rrbracket$ $\Longrightarrow t \in$ post C
which is proved by induction on the big step.

In a nutshell:
collecting semantics overapproximates big-step semantics

Later:

program analysis overapproximates collecting semantics
Together:
program analysis overapproximates big-step semantics
The other direction

$$
t \in \operatorname{post}(l f p c(\text { step } S)) \Longrightarrow \exists s \in S .(c, s) \Rightarrow t
$$

is also true but is not proved in this course.

(10) Annotated Commands

(1) Collecting Semantics

18 Abstract Interpretation: Orderings
(19) A Generic Abstract Interpreter
(20) Executable Abstract State
(21) Termination
(22) Analysis of Boolean Expressions
23) Interval Analysis

D4. Widening and Narrowing

Approximating

the Collecting semantics

A conceptual step:

$$
(\text { vname } \Rightarrow \text { val }) \text { set } \leadsto \text { vname } \Rightarrow \text { val set }
$$

A domain-specific step:

$$
\text { val set } \sim '^{\prime} a v
$$

where ' $a v$ is some ordered type of abstract values that we can compute on.

Example: parity analysis

Abstract values: datatype parity $=$ Even $|O d d|$ Either

concretization function $\gamma_{\text {parity }}$

A concretisation function γ maps an abstract value to a set of concrete values

Bigger abstract values represent more concrete values

Example: parity

Fact Type parity is a partial order.

Top element

A partial order ' a has a top element \top :: ' a if

$$
a \leq \top
$$

Semilattice

A type ' a is a semilattice if

- it is a partial order and
- there is a least upper bound operation $\sqcup:: ' a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$

$$
\begin{aligned}
& x \leq x \sqcup y \quad y \leq x \sqcup y \\
& \llbracket x \leq z ; y \leq z \rrbracket \Longrightarrow x \sqcup y \leq z
\end{aligned}
$$

Application: abstract \cup, join two computation paths We often call \sqcup the join operation.

\leq uniquely determines \sqcup

Fact If ' a is a semilattice, then the least upper bound of two elements is uniquely determined.

If u_{1} and u_{2} are least upper bounds of x and y, then $u_{1} \leq u_{2}$ and $u_{2} \leq u_{1}$.

Example: parity

Fact Type parity is a semilattice with top element.

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

Examples

class order: partial orders
class semilattice_sup:
semilattices
class semilattice_sup_top: semilattices with top element
A type belongs to some class if

- the interface functions are defined on that type
- and satisfy the axioms of the class (proof needed!)

Notation: $\tau:: C$ means type τ belongs to class C
Example: parity :: semilattice_sup

HOL/Orderings.thy Abs_Int1_parity.thy

Orderings and instances

From abstract values to abstract states

Need to abstract collecting semantics:
state set

- First attempt:

$$
\text { 'av st }=\text { vname } \Rightarrow \text { 'av }
$$

where ' $a v$ is the type of abstract values

- Problem: cannot abstract empty set of states (unreachable program points!)
- Solution: type 'av st option

Lifting semilattice and γ to 'av st option

Lemma If ' $a::$ semilattice_sup_top then ' $b \Rightarrow^{\prime} a::$ semilattice_sup_top

Proof

$(f \leq g)=(\forall x . f x \leq g x)$
$f \sqcup g=(\lambda x . f x \sqcup g x)$
$\top=(\lambda x . \top)$
definition

$$
\begin{aligned}
& \gamma_{\text {fun }}::\left({ }^{\prime} a \Rightarrow{ }^{\prime} c \text { set }\right) \Rightarrow\left({ }^{\prime} b \Rightarrow^{\prime} a\right) \Rightarrow\left({ }^{\prime} b \Rightarrow{ }^{\prime} c\right) \text { set } \\
& \text { where } \gamma_{-} \text {fun } \gamma F=\{f . \forall x . f x \in \gamma(F x)\}
\end{aligned}
$$

Lemma If γ is monotone then γ_{-}fun γ is monotone.

Lemma If ' $a::$ semilattice_sup_top then 'a option :: semilattice_sup_top

Proof

(Some $x \leq$ Some $y)=(x \leq y)$
(None $\leq{ }_{-}$) = True
(Some \leq None $)=$ False
Some $x \sqcup$ Some $y=$ Some $(x \sqcup y)$
None $\sqcup y=y$
$x \sqcup$ None $=x$
$\top=$ Some \top
Corollary If ' $a::$ semilattice_sup_top
then 'a st option :: semilattice_sup_top
γ_{-}option $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} c\right.$ set $) \Rightarrow{ }^{\prime} a$ option $\Rightarrow{ }^{\prime} c$ set
γ_{-}option γ None $=\{ \}$
γ_{-}option $\gamma($ Some $a)=\gamma a$
Lemma If γ is monotone then $\gamma_{\text {_option }} \gamma$ is monotone.

Remember:
Lemma If ' $a::$ order then ' a acom $::$ order.
Partial order is enough, semilattice not needed.
Lifting $\gamma::{ }^{\prime} a \Rightarrow{ }^{\prime} c$ to ${ }^{\prime} a$ acom $\Rightarrow^{\prime} c$ acom is easy:
map_acom

Lemma

If γ is monotone then map_acom γ is monotone.

(10) Annotated Commands

(17) Collecting Semantics
(18) Abstract Internretation: Orderings
(19) A Generic Abstract Interpreter
(20) Executable Abstract State
21) Termination
2. Analysis of Boolean Expressions
23) Interval Analysis
(24) Widening and Narrowing

- Stepwise development of a generic abstract interpreter as a parameterized module
- Parameters/Input: abstract type of values together with abstractions of the operations on concrete type val $=$ int.
- Result/Output: abstract interpreter that approximates the collecting semantics by computing on abstract values.
- Realization in Isabelle as a locale

Parameters (I)

Abstract values: type 'av :: semilattice_sup_top
Concretization function: $\gamma::$ 'av \Rightarrow val set
Assumptions: $a \leq b \Longrightarrow \gamma a \subseteq \gamma b$

$$
\gamma \top=U N I V
$$

Parameters (II)

Abstract arithmetic: $n u m^{\prime}::$ val \Rightarrow 'av

$$
p l u s^{\prime}:: ' a v \Rightarrow{ }^{\prime} a v \Rightarrow{ }^{\prime} a v
$$

Intention: hum' abstracts the meaning of N plus ${ }^{\prime}$ abstracts the meaning of Plus
Required for each constructor of $a \exp$ (except V)
Assumptions:

$$
\begin{aligned}
& i \in \gamma\left(\text { num }^{\prime} i\right) \\
& \llbracket i_{1} \in \gamma a_{1} ; i_{2} \in \gamma a_{2} \rrbracket \Longrightarrow i_{1}+i_{2} \in \gamma\left(\text { plus }^{\prime} a_{1} a_{2}\right)
\end{aligned}
$$

The $n \in \gamma$ a relationship is maintained

Lifted concretization functions

$\gamma_{s}:$: 'av st \Rightarrow state set
$\gamma_{s}=\gamma_{-}$fun γ
$\gamma_{o}::$ 'av st option \Rightarrow state set
$\gamma_{o}=\gamma_{-}$option γ_{s}
$\gamma_{c}::$ 'a st option acom \Rightarrow state set acom
$\gamma_{c}=$ map_acom γ_{o}
All of them are monotone.

Abstract interpretation of aexp

fun aval' $::$ aexp $\Rightarrow{ }^{\prime} a v$ st $\Rightarrow{ }^{\prime} a v$
aval $^{\prime}(N n) S=n u m^{\prime} n$
aval $^{\prime}(V x) S=S x$
aval $^{\prime}\left(\begin{array}{lll}\text { Plus } & a_{1} & a_{2}\end{array}\right) S=$ plus $^{\prime}\left(\right.$ aval $\left.^{\prime} a_{1} S\right)\left(\right.$ aval $\left.^{\prime} a_{2} S\right)$
Correctness of aval' wrt aval:
Lemma $s \in \gamma_{s} S \Longrightarrow$ aval a $s \in \gamma\left(\right.$ aval $\left.^{\prime} a S\right)$
Proof by induction on a using the assumptions about the parameters.

Example instantiation with parity

\leq / \sqcup and $\gamma_{\text {parity }}$: see earlier
num_parity $i=($ if $i \bmod 2=0$ then Even else $O d d)$
plus_parity Even Even $=$ Even
plus_parity Odd Odd $=$ Even
plus_parity Even Odd $=$ Odd plus_parity Odd Even = Odd
plus_parity Either $y=$ Either
plus_parity x Either $=$ Either

Example instantiation with parity

Input: $\gamma \quad \mapsto \gamma_{\text {parity }}$
num ${ }^{\prime} \mapsto$ num_parity
plus ${ }^{\prime} \mapsto$ plus_parity
Must prove parameter assumptions
Output: aval' \mapsto aval_parity
Example The value of
aval_parity (Plus ($\left.\left.V^{\prime \prime} x^{\prime \prime}\right)\left(V^{\prime \prime} x^{\prime \prime}\right)\right)$
$\left(\left(\lambda_{-}\right.\right.$. Either $\left.)\left(" x^{\prime \prime}:=O d d\right)\right)$
is Even.

Abs_Int1_parity.thy

Locale interpretation

Abstract interpretation of bexp

For now, boolean expressions are not analysed.

Abstract interpretation of com

Abstracting the collecting semantics

$$
\begin{aligned}
\text { step }:: & \tau \Rightarrow \tau \text { acom } \Rightarrow \tau \text { acom } \\
& \text { where } \tau=\text { state set }
\end{aligned}
$$

to
step $^{\prime}:: \tau \Rightarrow \tau$ acom $\Rightarrow \tau$ acom where $\tau=$ 'av st option

Idea: define both as instances of a generic step function:

$$
\text { Step }::{ }^{\prime} a \Rightarrow{ }^{\prime} a \text { acom } \Rightarrow{ }^{\prime} a \text { acom }
$$

Step :: 'a $\Rightarrow{ }^{\prime}$ a acom $\Rightarrow{ }^{\prime} a$ acom

Parameterized wrt

- type ' a with \sqcup
- the interpretation of assignments and tests:

$$
\begin{aligned}
& \text { asem }:: \text { vname } \Rightarrow \text { aexp } \Rightarrow{ }^{\prime} a{ }^{\prime} a \\
& \text { bsem }:: \text { bexp } \Rightarrow{ }^{\prime} a \Rightarrow '^{\prime} a
\end{aligned}
$$

Step $a\left(\operatorname{SKIP}\left\{{ }_{-}\right\}\right)=\operatorname{SKIP}\{a\}$
Step $a\left(x::=e\left\{{ }_{-}\right\}\right)=x::=e\{$ asem x e $a\}$
Step a $\left(C_{1} ; ; C_{2}\right)=$ Step a $C_{1} ;$ Step $\left(\right.$ post $\left.C_{1}\right) C_{2}$
Step a (IF b THEN $\left.\left\{P_{1}\right\} C_{1} \operatorname{ELSE}\left\{P_{2}\right\} C_{2}\{-\}\right)=$ IF b THEN \{bsem b a\} Step $P_{1} C_{1}$ ELSE \{bsem (Not b) a\} Step $P_{2} C_{2}$ $\left\{\right.$ post $C_{1} \sqcup$ post $\left.C_{2}\right\}$

Step $a(\{I\}$ WHILE $b D O\{P\} C\{-\})=$ $\{a \sqcup$ post $C\}$ WHILE b DO \{bsem b I\} Step P C $\{b s e m($ Not $b) I\}$

Instantiating Step

The truth: asem and bsem are (hidden) parameters of Step: Step asem bsem ...
step $=$
Step $(\lambda x$ e $S .\{s(x:=$ aval e $s) \mid s . s \in S\})$
($\lambda b S .\{s \in S$. bval $b s\}$)
step $^{\prime}=$ Step asem ($\lambda b S . S$)
where
asem x e $S=$
(case S of None \Rightarrow None
| Some $S \Rightarrow$ Some $\left(S\left(x:=\right.\right.$ aval $^{\prime}$ e $\left.\left.S\right)\right)$)

Example: iterating step_parity

$$
(\text { step_parity } S)^{k} C
$$

where

$$
\begin{aligned}
C= & x::=N 3\{\text { None }\} \\
& \{\text { None }\} \\
& \text { WHILE b DO }\{\text { None }\} \\
& x::=\operatorname{Plus}(\text { V } x)(N 5)\{\text { None }\} \\
& \{\text { None }\} \\
S= & \text { Some }\left(\lambda_{.} \text {Either }\right) \\
S_{p}= & \text { Some }\left(\left(\lambda_{_} . \text {Either }\right)(x:=p)\right)
\end{aligned}
$$

Correctness of step' wrt step

The conretization of step ${ }^{\prime}$ overaproximates step:
Corollary step $\left(\gamma_{o} S\right)\left(\gamma_{c} C\right) \leq \gamma_{c}\left(\right.$ step $\left.^{\prime} S C\right)$
where $S::$ 'av st option

$$
C:: \text { 'av st option acom }
$$

Lemma Step $f g\left(\gamma_{o} S\right)\left(\gamma_{c} C\right) \leq \gamma_{c}\left(\right.$ Step $\left.f^{\prime} g^{\prime} S C\right)$ if for all $x, e, b: \quad f x e\left(\gamma_{o} S\right) \subseteq \gamma_{o}\left(f^{\prime} x e S\right)$

$$
g b\left(\gamma_{o} S\right) \subseteq \gamma_{o}\left(g^{\prime} b S\right)
$$

Proof by an easy induction on C

The abstract interpreter

- Ideally: iterate step ${ }^{\prime}$ until a fixpoint is reached
- May take too long
- Sufficient: any pre-fixpoint: step ${ }^{\prime} S C \leq C$ Means iteration does not increase annotations, i.e. annotations are consistent but maybe too big

Unbounded search

From the HOL library:
while_option ::

$$
\left({ }^{\prime} a \Rightarrow b o o l\right) \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow^{\prime} a \Rightarrow^{\prime} a \text { option }
$$

such that
while_option b f $x=$
(if b x then while_option b $f(f x)$ else Some x)
and while_option b f $x=$ None if the recursion does not terminate.

Pre-fixpoint:
pfp $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a$ option
$p f p f=$ while_option $(\lambda x . \neg f x \leq x) f$
Start iteration with least annotated command: bot $c=$ annotate $(\lambda p$. None) c

The generic

abstract interpreter

definition $A I::$ com \Rightarrow 'av st option acom option where $A I c=p f p\left(s t e p^{\prime} \top\right)(b o t c)$

Theorem $A I c=$ Some $C \Longrightarrow C S c \leq \gamma_{c} C$
Proof From the assumption: step ${ }^{\top} T \leq C$ By monotonicity: $\gamma_{c}\left(\right.$ step $\left.^{\prime} \top C\right) \leq \gamma_{c} C$ By step/step': step $\left(\gamma_{o} \top\right)\left(\gamma_{c} C\right) \leq \gamma_{c}\left(\right.$ step $\left.^{\prime} \top C\right)$ Hence $\gamma_{c} C$ is a pfp of step $\left(\gamma_{o} \top\right)=$ step UNIV Because $C S$ is the least pfp of step UNIV: $C S c \leq \gamma_{c} C$

Problem

$A I$ is not directly executable

because $p f p$ compares $f C \leq C$ where C :: 'av st option acom which compares functions vname \Rightarrow 'av which is not computable: vname is infinite.

(10) Annotated Commands

(17) Collecting Semantics
(18) Abstract Interpretation: Orderings
(19) A Generic Abstract Interpreter
(20) Executable Abstract State
(1) Termination

22 Analysis of Boolean Expressions
(23) Interval Analysis
(24) Widening and Narrowing

Solution

Record only the finite set of variables actually present in a program.

An association list representation:
type_synonym 'a st_rep $=(v n a m e \times$ 'a) list
From 'a st_rep back to vname $\Rightarrow{ }^{\prime} a$:
fun fun_rep $::\left({ }^{\prime} a:\right.$:top) st_rep $\Rightarrow\left(v n a m e \Rightarrow{ }^{\prime} a\right)$
fun_rep $((x, a) \# p s)=($ fun_rep $p s)(x:=a)$ fun_rep []$=(\lambda x . \top)$
Missing variables are mapped to \top
Example: fun_rep $\left[\left({ }^{\prime \prime} x^{\prime \prime}, a\right),\left({ }^{\prime \prime} x^{\prime \prime}, b\right)\right]$
$=\left((\lambda x . \top)\left({ }^{\prime \prime} x^{\prime \prime}:=b\right)\right)\left({ }^{\prime \prime} x^{\prime \prime}:=a\right)=(\lambda x . \top)\left({ }^{\prime \prime} x^{\prime \prime}:=a\right)$

Comparing association lists

Compare them only on their finite "domains":
less_eq_st_rep $p s_{1} p s_{2}=$
$\left(\forall x \in \operatorname{set}\left(m a p f s t ~ p s_{1}\right) \cup\right.$ set (map fst $\left.p s_{2}\right)$.

$$
\text { fun_rep } \left.p s_{1} x \leq \text { fun_rep } p s_{2} x\right)
$$

Not a partial order because not antisymmetric!
Example: $\left[\left({ }^{\prime \prime} x^{\prime \prime}, a\right),\left({ }^{\prime \prime} y^{\prime \prime}, b\right)\right]$ and $\left[\left({ }^{\prime \prime} y^{\prime \prime}, b\right),\left({ }^{\prime \prime} x^{\prime \prime}, a\right)\right]$

Quotient type 'ast

Define eq_st $p s_{1} p s_{2}=\left(f u n _r e p p s_{1}=f u n_{-} r e p p s_{2}\right)$
Overwrite 'a st $=$ vname \Rightarrow ' a by
quotient_type 'a st $=($ 'a::top $)$ st_rep $/$ eq_st
Elements of 'a st:
equivalence classes $[p s]_{\text {eq_st }}=\left\{p s^{\prime}\right.$. eq_st ps $\left.p s^{\prime}\right\}$
Abbreviate $[p s]_{e q-s t}$ by $S t p s$

Alternative to quotient: canonical representatives

For example, the subtype of sorted association lists:

- $\left[\left({ }^{\prime \prime} x^{\prime \prime}, a\right),\left({ }^{\prime \prime} y^{\prime \prime}, b\right)\right]$
- $\left[\left({ }^{\prime \prime} y^{\prime \prime}, b\right),\left({ }^{\prime \prime} x^{\prime \prime}, a\right)\right]$

More concrete, and probably a bit more complicated

Auxiliary functions on ' a st

Turning an abstract state into a function:
fun (St ps) = fun_rep ps
Updating an abstract state:
update (St ps) x $a=S t((x, a) \# p s)$

Turning 'a st into a semilattice

$\left(\right.$ St $\left.p s_{1} \leq S t p s_{2}\right)=$ less_eq_st_rep $p s_{1} p s_{2}$
St $p s_{1} \sqcup S t p s_{2}=S t\left(m a p 2_{-} s t_{-} r e p(\sqcup) p s_{1} p s_{2}\right)$
fun map2_st_rep ::

$$
\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a\right) \Rightarrow{ }^{\prime} a \text { st_rep } \Rightarrow^{\prime} a \text { st_rep } \Rightarrow^{\prime} a \text { st_rep }
$$

Characteristic property:
fun_rep (map2_st_rep f ps $s_{1} p s_{2}$) $=$
$\left(\lambda x . f\left(f u n _r e p ~ p s_{1} x\right)\left(f u n _r e p ~ p s_{2} x\right)\right)$
if $f \top \top=\top$

Modified abstract interpreter

Everything as before, except for $S::$ 'av st:

$$
\begin{array}{ll}
S x & \sim \text { fun } S x \\
S(x:=a) & \leadsto \text { update } S x a
\end{array}
$$

Now $A I$ is executable!

Abs_Int1_parity.thy Abs_Int1_const.thy

Examples

(15) Introduction
(10) Annotated Commands
(17) Collecting Semantics
(18) Abstract Interpretation: Orderings
(19) A Generic Abstract Interpreter
(20) Executable Abstract State
21) Termination

22 Analysis of Boolean Expressions
23) Interval Analysis

DA) Widening and Narrowing

Beyond partial correctness

- AI may compute any pfp
- $A I$ may not terminate

The solution: Monotonicity
\Longrightarrow
Precision AI computes least pre-fixpoints
Termination $A I$ terminates if ' $a v$ is of bounded height

Monotonicity

The monotone framework also demands monotonicity of abstract arithmetic:

$$
\llbracket a_{1} \leq b_{1} ; a_{2} \leq b_{2} \rrbracket \Longrightarrow \text { plus }^{\prime} a_{1} a_{2} \leq \text { plus }^{\prime} b_{1} b_{2}
$$

Theorem In the monotone framework, aval' is also monotone

$$
S_{1} \leq S_{2} \Longrightarrow a v a l^{\prime} \text { e } S_{1} \leq a v a l^{\prime} e S_{2}
$$

and therefore step ${ }^{\prime}$ is also monotone:

$$
\llbracket S_{1} \leq S_{2} ; C_{1} \leq C_{2} \rrbracket \Longrightarrow \text { step }^{\prime} S_{1} C_{1} \leq \text { step }^{\prime} S_{2} C_{2}
$$

Precision: smaller is better

If f is monotone and \perp is a least element, then $p f p f \perp$ is a least pre-fixpoint of f

Lemma Let \leq be a partial order on a set L with least element $\perp \in L: x \in L \Longrightarrow \perp \leq x$. Let $f \in L \rightarrow L$ be a monotone function.
If while_option $(\lambda x . \neg f x \leq x) f \perp=$ Some p then p is the least pre-fixpoint of f on L.
That is, if $f q \leq q$ for some $q \in L$, then $p \leq q$.
Proof Clearly f $p \leq p$.
Given any pre-fixpoint $q \in L$, property

$$
P x=(x \in L \wedge x \leq q)
$$

is an invariant of the while loop:
$P \perp$ holds and $P x$ implies $f x \leq f q \leq q$
Hence upon termination P must hold and thus $p \leq q$.

Application to

$$
\begin{aligned}
& \text { AI } c=p f p\left(\text { step }^{\prime} \top\right)(\text { bot } c) \\
& \text { pfp } f=\text { while_option }(\lambda x . \neg f x \leq x) f
\end{aligned}
$$

Because bot c is a least element and step' is monotone, $A I$ returns least pre-fixpoints

Termination

Because step' is monotone, starting from bot c generates an ascending < chain of annotated commands. We exhibit a measure function m_{c} that decreases with every loop iteration:
$C_{1}<C_{2} \Longrightarrow m_{c} C_{2}<m_{c} C_{1}$
Modulo some details ...

The measure function m_{c} is constructed from a measure function m on ' $a v$ in several steps.

Parameters: $m::{ }^{\prime} a v \Rightarrow$ nat

$$
h:: \text { nat }
$$

Assumptions: $m x \leq h$

$$
x<y \Longrightarrow m y<m x
$$

Parameter h is the height of $<$: every chain $x_{0}<x_{1}<\ldots$ has length at most h.

Application to parity and const: $h=1$

Measure functions

$$
\begin{aligned}
& m_{c}:: \text { 'av st option acom } \Rightarrow \text { nat } \\
& m_{c} C=\left(\sum a \leftarrow \text { annos } C . m_{o} a(\text { vars } C)\right) \\
& m_{o}:: \text { 'av st option } \Rightarrow \text { vname set } \Rightarrow \text { nat } \\
& m_{o}(\text { Some } S) X=m_{s} S X \\
& m_{o} \text { None } X=h * \text { card } X+1 \\
& m_{s}::^{\prime} \text { 'av st } \Rightarrow \text { vname set } \Rightarrow \text { nat } \\
& m_{s} S X=\left(\sum x \in X . m(S x)\right)
\end{aligned}
$$

All measure functions are bounded:
finite $X \Longrightarrow m_{s} S X \leq h * \operatorname{card} X$ finite $X \Longrightarrow m_{o}$ opt $X \leq h * \operatorname{card} X+1$ $m_{c} C \leq$ length $($ annos $C) *(h * \operatorname{card}($ vars $C)+1)$

Hence $A I c$ requires at most $p *((h+1) * n+1)$ steps where $p=$ the number of annotation points of c and $n=$ the number of variables in c.

Complication

Anti-monotonicity does not hold!
Example:
finite $X \Longrightarrow S_{1}<S_{2} \Longrightarrow m_{s} S_{2} X<m_{s} S_{1} X$
because $S_{1}<S_{2} \longleftrightarrow S_{1} \leq S_{2} \wedge\left(\exists x . S_{1} x<S_{2} x\right)$
Need to know that S_{1} and S_{2} are the same outside X. Follows if both are T outside X.

top_on

top_on $_{s}::$ 'av st \Rightarrow vname set \Rightarrow bool top_ons $S X=(\forall x \in X . S x=\mathrm{T})$
top_on ${ }_{o}::$ 'av st option \Rightarrow vname set \Rightarrow bool top_on $_{o}($ Some $S) X=$ top_on $_{s} S X$ top_ono None $X=$ True
top_on $::$ 'av st option acom \Rightarrow bool top_on $C X=\left(\forall a \in \operatorname{set}(a n n o s C) . t o p_{-} o n_{o} a X\right)$

Now we can formulate and prove anti-monotonicity:
\llbracket finite $X ; S_{1}=S_{2}$ on $-X ; S_{1}<S_{2} \rrbracket$
$\Longrightarrow m_{s} S_{2} X<m_{s} S_{1} X$
\llbracket finite X; top_on $o_{o}(-X) ;$ top_on $_{o} o_{2}(-X)$; $o_{1}<o_{2}$ 】
$\Longrightarrow m_{o} o_{2} X<m_{o} o_{1} X$
\llbracket top_on $_{c} C_{1}\left(-\right.$ vars $\left.C_{1}\right) ;$ top_on $_{c} C_{2}\left(-\right.$ vars $\left.C_{2}\right)$;
$C_{1}<C_{2} \rrbracket$
$\Longrightarrow m_{c} C_{2}<m_{c} C_{1}$

Now we can prove termination

$$
\exists C . A I c=\text { Some } C
$$

because step' leaves top_ons invariant:
top_on $_{c} C(-$ vars $C) \Longrightarrow$
top_on $_{c}\left(\right.$ step $\left.^{\prime} \top C\right)(-$ vars $C)$

Warning: step ${ }^{\prime}$ is very inefficient.

It is applied to every subcommand in every step. Thus the actual complexity of $A I$ is $O\left(p^{2} * n * h\right)$

Better iteration policy:
Ignore subcommands where nothing has changed.
Practical algorithms often use a control flow graph and a worklist recording the nodes where annotations have changed.

As usual: efficiency complicates proofs.

Abs_Int1_parity.thy Abs_Int1_const.thy

Termination

(10) Annotated Commands

(17) Collecting Semantics
(18) Abstract Interpretation: Orderings
(19) A Generic Abstract Interpreter
(20) Executable Abstract State

21 Termination
22 Analysis of Boolean Expressions
23) Interval Analysis
(24) Widening and Narrowing

Need to simulate collecting semantics (S :: state set):

$$
\{s \in S . \text { bval } b s\}
$$

Given S :: 'av st, reduce it to some $S^{\prime} \leq S$ such that

$$
\text { if } s \in \gamma_{s} S \text { and bval } b s \text { then } s \in \gamma_{s} S^{\prime}
$$

- No state satisfying b is lost
- but $\gamma_{s} S^{\prime}$ may still contain states not satisfying b.
- Trivial solution: $S^{\prime}=S$

Computing S^{\prime} from S requires \sqcap

Lattice

A type ${ }^{\prime} a$ is a lattice if

- it is a semilattice
- there is a greatest lower bound operation

$$
\sqcap::^{\prime} a \Rightarrow ' a \Rightarrow{ }^{\prime} a
$$

$$
x \sqcap y \leq x \quad x \sqcap y \leq y
$$

$$
\llbracket z \leq x ; z \leq y \rrbracket \Longrightarrow z \leq x \sqcap y
$$

Note: Π is also called infimum or meet.
Type class: lattice

Bounded lattice

A type ' a is a bounded lattice if

- it is a lattice
- there is a top element $T::^{\prime} a$
- and a bottom element $\perp::{ }^{\prime} a$ $\perp \leq a$

Type class: bounded_lattice
Fact Any complete lattice is a bounded lattice.

Concretization

We strengthen the abstract interpretation framework by assuming

- 'av :: bounded_lattice
- $\gamma a_{1} \cap \gamma a_{2} \subseteq \gamma\left(a_{1} \sqcap a_{2}\right)$
$\Longrightarrow \gamma\left(a_{1} \sqcap a_{2}\right)=\gamma a_{1} \cap \gamma a_{2}$
$\Longrightarrow \sqcap$ is precise!
How about $\gamma a_{1} \cup \gamma a_{2}$ and $\gamma\left(a_{1} \sqcup a_{2}\right)$?
- $\gamma \perp=\{ \}$

Backward analysis of aexp

Given $e::$ aexp

$$
\begin{aligned}
& a:: \text { 'av (the intended value of } e \text {) } \\
& S:: \text { 'av st }
\end{aligned}
$$

restrict S to some $S^{\prime} \leq S$ such that

$$
\left\{s \in \gamma_{s} S . \text { aval e } s \in \gamma a\right\} \subseteq \gamma_{s} S^{\prime}
$$

$\gamma_{s} S^{\prime}$ overapproximates the subset of $\gamma_{s} S$ that makes e evaluate to an $\in \gamma a$.

What if $\left\{s \in \gamma_{s} S\right.$. aval e $\left.s \in \gamma a\right\}$ is empty? Work with 'av st option instead of 'av st

$i n v _a v a l^{\prime} N$

inv_aval' ::

$$
a \exp \Rightarrow{ }^{\prime} a v \Rightarrow \text { 'av st option } \Rightarrow \text { 'av st option }
$$

inv_aval' (Nn) a $S=$
(if test_num' n a then S else None)
An extension of the interface of our framework:
test_num' $::$ int \Rightarrow 'av \Rightarrow bool
Assumption:
test_num' \quad i $a=(i \in \gamma a)$
Note: $i \in \gamma a$ not necessarily executable

inv_aval' V

inv_aval' (Vx) a $S=$
case S of None \Rightarrow None
| Some $S \Rightarrow$

$$
\begin{aligned}
& \text { let } a^{\prime}=\text { fun } S x \sqcap a \\
& \text { in if } a^{\prime}=\perp \text { then None } \\
& \text { else Some (update } S x a^{\prime} \text {) }
\end{aligned}
$$

Avoid \perp component in abstract state, turn abstract state into None instead.

inv_aval' Plus

A further extension of the interface of our framework: inv_plus' $::$ ' $a v \Rightarrow$ ' $a v \Rightarrow{ }^{\prime} a v \Rightarrow{ }^{\prime} a v \times{ }^{\prime} a v$
Assumption:
inv_plus' a $a_{1} a_{2}=\left(a_{1}^{\prime}, a_{2}\right) \Longrightarrow$

$$
\begin{aligned}
& \gamma a_{1}^{\prime} \supseteq\left\{i_{1} \in \gamma a_{1} \cdot \exists i_{2} \in \gamma a_{2} \cdot i_{1}+i_{2} \in \gamma a\right\} \wedge \\
& \gamma a_{2}{ }^{\prime} \supseteq\left\{i_{2} \in \gamma a_{2} \cdot \exists i_{1} \in \gamma a_{1} \cdot i_{1}+i_{2} \in \gamma a\right\}
\end{aligned}
$$

Definition:

inv_aval' (Plus ér e_{2}) a $S=$
(let $\left(a_{1}, a_{2}\right)=$ inv_plus' a (aval" $\left.e_{1} S\right)\left(\right.$ aval $\left.^{\prime \prime} e_{2} S\right)$
in inv_aval' $e_{1} a_{1}$ (inv_aval' $\left.e_{2} a_{2} S\right)$)
(Analogously for all other arithmetic operations)

Backward analysis of bexp

Given $b::$ bexp
res $::$ bool (the intended value of b)
$S::$ 'av st option
restrict S to some $S^{\prime} \leq S$ such that

$$
\left\{s \in \gamma_{o} S . \text { bval } b s=r e s\right\} \subseteq \gamma_{o} S^{\prime}
$$

$\gamma_{s} S^{\prime}$ overapproximates the subset of $\gamma_{s} S$ that makes b evaluate to res.
inv_bval' ::
bexp \Rightarrow bool \Rightarrow 'av st option \Rightarrow 'av st option
inv_bval' (Bc v) res $S=$ (if $v=$ res then S else None)
inv_bval' (Not b) res $S=$ inv_bval' $b(\neg$ res) S
inv_bval' $\left(\begin{array}{lll}A n d & b_{1} & b_{2}\end{array}\right)$ res $S=$
if res
then inv_bval' $b_{1} \operatorname{True}\left(i n v_{-} b v a l^{\prime} b_{2} \operatorname{Tr} u e S\right)$ else inv_bval' b_{1} False $S \sqcup$ inv_bval' b_{2} False S
inv_bval' $\left(\right.$ Less $\left.e_{1} e_{2}\right)$ res $S=$
let $\left(a_{1}, a_{2}\right)=$ inv_less ${ }^{\prime}$ res $\left(\right.$ aval $\left.^{\prime \prime} e_{1} S\right)\left(\right.$ aval $\left.^{\prime \prime} e_{2} S\right)$ in inv_aval' $e_{1} a_{1}\left(i n v _a v a l^{\prime} e_{2} a_{2} S\right)$

A further extension of the interface of our framework:
inv_less ${ }^{\prime}::$ bool $\Rightarrow{ }^{\prime} a v \Rightarrow{ }^{\prime} a v \Rightarrow{ }^{\prime} a v \times{ }^{\prime} a v$
Assumption:
inv_less' res $a_{1} a_{2}=\left(a_{1}^{\prime}, a_{2}\right) \Longrightarrow$

$$
\begin{aligned}
& \gamma a_{1}^{\prime} \supseteq\left\{i_{1} \in \gamma a_{1} \cdot \exists i_{2} \in \gamma a_{2} .\left(i_{1}<i_{2}\right)=r e s\right\} \\
& \gamma a_{2}^{\prime} \supseteq\left\{\begin{array}{l}
\text { ' }
\end{array} \supseteq \begin{array}{l}
\left.i_{2} \in \gamma a_{2} . \exists i_{1} \in \gamma a_{1} .\left(i_{1}<i_{2}\right)=r e s\right\}
\end{array}\right.
\end{aligned}
$$

Example: intervals, informally

inv_plus ${ }^{\prime}[0,4][10,20][-10,0]=([10,14],[-10,-6])$
inv_less' True $[0,20] \quad[-5,5]=([0,4],[1,5])$
inv_bval' (x + y < z) True

$$
\{\mathrm{x} \mapsto[10,20], \mathrm{y} \mapsto[-10,0], \mathrm{z} \mapsto[-5,5]\}:
$$

inv_aval' $\mathbf{z}[1,5]\{\bullet\}=\{\bullet, \mathbf{z} \mapsto[1,5]\}$
inv_aval' (x + y) [0, 4] \{•\}:
inv_aval' y $[-10,-6]\{\bullet\}=\{\bullet, \mathrm{y} \mapsto[-10,-6], \bullet\}$
inv_aval' $\times[10,14]\{\bullet\}=$
$\{\mathrm{x} \mapsto[10,14], \mathrm{y} \mapsto[-10,-6], \mathrm{z} \mapsto[1,5]\}$

step ${ }^{\prime}$

$\begin{array}{ll}\text { Before: } & \text { step }{ }^{\prime}=\text { Step asem }(\lambda b \text { S. S }) \\ \text { Now: } & \text { step }{ }^{\prime}=\text { Step asem }(\lambda b . \text { inv_bval' } b \text { True })\end{array}$

Correctness proof

Almost as before, but with correctness lemmas for inv_aval'
$\left\{s \in \gamma_{0} S\right.$. aval e $\left.s \in \gamma a\right\} \subseteq \gamma_{o}\left(\right.$ inv_aval $^{\prime}$ e a $\left.S\right)$
and inv_bval':
$\left\{s \in \gamma_{o} S . b v=\right.$ bval $\left.b s\right\} \subseteq \gamma_{o}($ inv_bval' b bv $S)$

Summary

Extended interface to abstract interpreter:

- 'av :: bounded_lattice
$\gamma \perp=\{ \}$ and $\gamma a_{1} \cap \gamma a_{2} \subseteq \gamma\left(a_{1} \sqcap a_{2}\right)$
- test_num' $::$ int \Rightarrow 'av \Rightarrow bool
test_num' i $a=(i \in \gamma a)$
- inv_plus' $::$ 'av \Rightarrow ' $a v \Rightarrow{ }^{\prime} a v \Rightarrow$ 'av \times ' $a v$

【inv_plus' a $a_{1} a_{2}=\left(a_{1}^{\prime}, a_{2}\right)$;
$i_{1} \in \gamma a_{1} ; i_{2} \in \gamma a_{2} ; i_{1}+i_{2} \in \gamma a \rrbracket$
$\Longrightarrow i_{1} \in \gamma a_{1}{ }^{\prime} \wedge i_{2} \in \gamma a_{2}{ }^{\prime}$

- inv_less' $::$ bool \Rightarrow 'av \Rightarrow 'av \Rightarrow 'av \times 'av
«inv_less' $\left(i_{1}<i_{2}\right) a_{1} a_{2}=\left(a_{1}^{\prime}, a_{2}\right)$;
$i_{1} \in \gamma a_{1} ; i_{2} \in \gamma a_{2} \rrbracket$
$\Longrightarrow i_{1} \in \gamma a_{1}{ }^{\prime} \wedge i_{2} \in \gamma a_{2}{ }^{\prime}$
(15) Introduction
(10) Annotated Commands
(17) Collecting Semantics
(18) Abstract Interpretation: Orderings
(19) A Generic Abstract Interpreter
(20) Executable Abstract State

21 Termination
22 Analysis of Boolean Expressions
23 Interval Analysis
(4) Widening and Narrowing

∞ and $-\infty$

Extending type ' a with ∞ and $-\infty$:
datatype ' a extended $=\operatorname{Fin}^{\prime} a|\infty|-\infty$
type_synonym eint $=$ int extended
$(+),(-),(\leq),(<)$ extended to eint

Intervals

datatype ' a extended $=\operatorname{Fin}^{\prime} a|\infty|-\infty$ type_synonym eint $=$ int extended

A simple model of intervals:
type_synonym eint $2=$ eint \times eint
$\gamma_{\text {_rep }}::$ eint $2 \Rightarrow$ int set
γ_{-}rep $(l, h)=\{i . l \leq$ Fin $i \wedge$ Fin $i \leq h\}$
Problem: infinitely many empty intervals: all (i, j) where $j<i$ Thus $\gamma_{-} r e p p \subseteq \gamma_{-} r e p q$ is not antisymmetric and thus no partial order.

Intervals

datatype ' a extended $=\operatorname{Fin}^{\prime} a|\infty|-\infty$ type_synonym eint $=$ int extended type_synonym eint $2=$ eint \times eint

Quotient of eint2!

eq_ivl $::$ eint $2 \Rightarrow$ eint $2 \Rightarrow$ bool
eq_ivl $p_{1} p_{2}=\left(\gamma_{_}\right.$rep $p_{1}=\gamma_{-}$rep $\left.p_{2}\right)$
quotient_type $i v l=$ eint2 $/$ eq_ivl
Notation: $[l, h]::$ ivl
Let $\perp=[1,0]$

Partial order on $i v l$

$l_{1} \longmapsto h_{1}$

$$
\begin{aligned}
& (\perp \leq-)=\text { True } \\
& (-\leq \perp)=\text { False } \\
& \left(\left[l_{1}, h_{1}\right] \leq\left[l_{2}, h_{2}\right]\right)=\left(l_{2} \leq l_{1} \wedge h_{1} \leq h_{2}\right) \\
& ([1,0] \leq[2,3]) \neq(2 \leq 1 \wedge 0 \leq 3)
\end{aligned}
$$

Bounded lattice on ivl

$\perp \sqcup i v=i v$
$i v \sqcup \perp=i v$
$\left[l_{1}, h_{1}\right] \sqcup\left[l_{2}, h_{2}\right]=\left[\min l_{1} l_{2}, \max h_{1} h_{2}\right]$
$[1,0] \sqcup[4,5] \neq[1,5]$
$\left[l_{1}, h_{1}\right] \sqcap\left[l_{2}, h_{2}\right]=\left[\max l_{1} l_{2}, \min h_{1} h_{2}\right]$
$\top=[-\infty, \infty]$

Arithmetic on $i v l$

$\perp+i v=\perp$
$i v+\perp=\perp$
$\left[l_{1}, h_{1}\right]+\left[l_{2}, h_{2}\right]=\left[l_{1}+l_{2}, h_{1}+h_{2}\right]$
$-[l, h]=[-h,-l]$
$i v_{1}-i v_{2}=i v_{1}+-i v_{2}$

Inverse Analysis of Plus

inv_plus_ivl iv $i v_{1} i v_{2}=$
$\left(i v_{1} \sqcap\left(i v-i v_{2}\right), i v_{2} \sqcap\left(i v-i v_{1}\right)\right)$
Assume $i_{1} \in \gamma_{-} i v l i v_{1}, i_{2} \in \gamma_{-} i v l i v_{2}, i_{1}+i_{2} \in \gamma_{-} i v l i v$
Show $i_{1} \in \gamma_{-} i v l\left(i v_{1} \sqcap\left(i v-i v_{2}\right)\right)$

$$
=\gamma_{-} i v l i v_{1} \cap \gamma_{-} i v l\left(i v-i v_{2}\right)
$$

1. $i_{1} \in \gamma_{-} i v l i v_{1}$ by assumption(1)
2. $i_{1} \in \gamma_{-} i v l\left(i v-i v_{2}\right)$
$=\left\{i_{1} . \exists i \in \gamma_{-}\right.$ivl iv. $\left.\exists i_{2} \in \gamma_{-} i v l i v_{2} . i_{1}=i-i_{2}\right\}$ by assumptions $(2,3)$
Example: inv_plus_ivl $[0,4][10,20][-10,0]$
$=([10,20] \sqcap([0,4]-[-10,0]), \ldots)$
$=([10,20] \sqcap[0,14], \ldots)=([10,14], \ldots)$

Inverse Analysis of Less

Case False:
Eliminate all points from $i v_{1}$ and $i v_{2}$ that cannot yield " $\neg\left(\right.$ Less $\left.i v_{1} i v_{2}\right)$ ".
Example situation:

$i n v_{-} l e s s _i v l$ res $i v_{1} i v_{2}=$
(if res
then $\left(i v_{1} \sqcap\left(\right.\right.$ below $\left.i v_{2}-[1,1]\right)$,

else $\left(i v_{1} \sqcap\right.$ above $i v_{2}, i v_{2} \sqcap$ below $\left.i v_{1}\right)$)

Inverse Analysis of Less

inv_less_ivl res $i v_{1} i v_{2}=$
(if res
then $\left(i v_{1} \sqcap\left(\right.\right.$ below $\left.i v_{2}-[1,1]\right)$,
$i v_{2} \sqcap\left(\right.$ above $\left.\left.i v_{1}+[1,1]\right)\right)$
else $\left(i v_{1} \sqcap\right.$ above $i v_{2}, i v_{2} \sqcap$ below $\left.i v_{1}\right)$)
Example: inv_less_ivl True $[0,20][-5,5]$
$=([0,20] \sqcap($ below $[-5,5]-[1,1]), \ldots)$
$=([0,20] \sqcap([-\infty, 5]-[1,1]), \ldots)$
$=([0,20] \sqcap[-\infty, 4], \ldots)$
$=([0,4], \ldots)$

Abs_Int2_ivl.thy

The problem

If there are infinite ascending \leq chains of abstract values then the abstract interpreter may not terminate.
Canonical example: intervals

$$
[0,0] \leq[0,1] \leq[0,2] \leq[0,3] \leq \ldots
$$

Can happen even if the program terminates!

Widening

- $x_{0}=\perp, x_{i+1}=f\left(x_{i}\right)$
may not terminate while searching for a pfp: $f\left(x_{i}\right) \leq x_{i}$
- Widen in each step: $x_{i+1}=x_{i} \nabla f\left(x_{i}\right)$ until a pfp is found.
- We assume
- ∇ "extrapolates" its arguments: $x, y \leq x \nabla y$
- ∇ "jumps" far enough to prevent nontermination

Example: Widening on (non-empty) intervals

$\left[l_{1}, h_{1}\right] \nabla\left[l_{2}, h_{2}\right]=[l, h]$
where $l=\left(\right.$ if $l_{1}>l_{2}$ then $-\infty$ else $\left.l_{1}\right)$

$$
h=\left(\text { if } h_{1}<h_{2} \text { then } \infty \text { else } h_{1}\right)
$$

Warning

- $x_{i+1}=f\left(x_{i}\right)$ finds a least pfp
if it terminates, f is monotone, and $x_{0}=\perp$
- $x_{i+1}=x_{i} \nabla f\left(x_{i}\right)$ may return any pfp in the worst case \top

We win termination, we lose precision

A widening operator $\nabla::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ on a preorder must satisfy $x \leq x \nabla y$ and $y \leq x \nabla y$.

Widening operators can be extended from ' a to 'a st, 'a option and 'a acom.

Abstract interpretation with widening

New assumption: 'av has widening operator
iter_widen $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a$ option
iter_widen $f=$ while_option $(\lambda x . \neg f x \leq x)(\lambda x . x \nabla f x)$

Correctness (returns pfp): by definition
Abstract interpretation of c :

$$
\text { iter_widen }\left(\text { step }^{\prime} \top\right)(b o t c)
$$

Interval example

$x::=N 0\left\{A_{0}\right\} ; ;$
$\left\{A_{1}\right\}$
WHILE Less (V x) (N 100)
$D O\left\{A_{2}\right\}$
$x::=$ Plus $(V x)(N 1)\left\{A_{3}\right\}$
$\left\{A_{4}\right\}$

Narrowing

Widening returns a (potentially) imprecise pfp p.
If f is monotone, further iteration improves p :

$$
p \geq f(p) \geq f^{2}(p) \geq \ldots
$$

and each $f^{i}(p)$ is still a pfp!

- need not terminate: $[0, \infty] \geq[1, \infty] \geq \ldots$
- but we can stop at any point!

A narrowing operator $\triangle:: ' a \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a$ must satisfy $y \leq x \Longrightarrow y \leq x \triangle y \leq x$.

Lemma Let f be monotone.
If $f p \leq p$ then $f(p \Delta f p) \leq p \Delta f p \leq p$
iter_narrow $f p=$
while_option $(\lambda x . x \triangle f x<x)(\lambda x . x \triangle f x) p$
If f is monotone and p a pfp of f and the loop terminates, then (by the lemma) we obtain a pfp of f below p.
Iteration as long as progress is made: $x \triangle f x<x$

Example: Narrowing on (non-empty) intervals
$\left[l_{1}, h_{1}\right] \triangle\left[l_{2}, h_{2}\right]=[l, h]$
where $l=\left(\right.$ if $l_{1}=-\infty$ then l_{2} else $\left.l_{1}\right)$

$$
h=\left(\text { if } h_{1}=\infty \text { then } h_{2} \text { else } h_{1}\right)
$$

Abstract interpretation with widening \& narrowing

New assumption: 'av also has a narrowing operator $p f p _w n f x=$
(case iter_widen $f x$ of None \Rightarrow None
| Some $p \Rightarrow$ iter_narrow $f p$)

AI_wn $c=p f p _w n\left(\right.$ step $\left.^{\prime} \top\right)(b o t c)$
Theorem AI_wn $c=$ Some $C \Longrightarrow C S c \leq \gamma_{c} C$ Proof as before

Termination

of

$$
\text { while_option }(\lambda x . P x)(\lambda x . g x)
$$

via measure function m
such that m goes down with every iteration:

$$
P x \Longrightarrow m x>m(g x)
$$

May need some invariant Inv as additional premise:

$$
\operatorname{Inv} x \Longrightarrow P x \Longrightarrow m x>m(g x)
$$

Termination of iter_widen

iter_widen $f=$
while_option $(\lambda x . \neg f x \leq x)(\lambda x . x \nabla f x)$
As before (almost): Assume $m::{ }^{\prime} a v \Rightarrow$ nat and $h::$ nat such that $m x \leq h$ and $x \leq y \Longrightarrow m y \leq m x$ and additionally $\neg y \leq x \Longrightarrow m(x \nabla y)<m x$

Define the same functions $m_{s} / m_{o} / m_{c}$ as before.
Termination of iter_widen on 'a st option acom: Lemma $\neg C_{2} \leq C_{1} \Longrightarrow m_{c}\left(C_{1} \nabla C_{2}\right)<m_{c} C_{1}$ if top_on $C_{1}\left(-\right.$ vars $\left.C_{1}\right)$, top_on $C_{2}\left(-\right.$ vars $\left.C_{2}\right)$ and strip $C_{1}=\operatorname{strip} C_{2}$

Termination of iter_narrow

iter_narrow $f=$ while_option $(\lambda x . x \triangle f x<x)(\lambda x . x \triangle f x)$

Assume $n::$ 'av \Rightarrow nat such that $\llbracket y \leq x ; x \triangle y<x \rrbracket \Longrightarrow n(x \triangle y)<n x$

Define $n_{s} / n_{o} / n_{c}$ like $m_{s} / m_{o} / m_{c}$
Termination of iter_narrow on 'a st option acom:
Lemma $\llbracket C_{2} \leq C_{1} ; C_{1} \triangle C_{2}<C_{1} \rrbracket \Longrightarrow$ $n_{c}\left(C_{1} \triangle C_{2}\right)<n_{c} C_{1}$ if strip $C_{1}=$ strip C_{2}, top_on $C_{1}\left(-v a r s C_{1}\right)$ and top_onc $C_{2}\left(-\operatorname{vars} C_{2}\right)$

Measuring non-empty intervals

$$
\begin{aligned}
& m[l, h]=(\text { if } l=-\infty \text { then } 0 \text { else } 1)+ \\
& \quad(\text { if } h=\infty \text { then } 0 \text { else } 1) \\
& h=2 \\
& n \text { ivl }=2-m \text { ivl }
\end{aligned}
$$

[^0]: $$
 \Longrightarrow
 $$

 $$
 \text { vars } b \subseteq L w X
 $$

 $$
 X \subseteq L w X
 $$

 $$
 L c(L w X) \subseteq L w X \quad ?
 $$

